DOI QR코드

DOI QR Code

Modified Compact Combline Filter Using Planar Parallel Coupled Structure with Extended Rejection Bandwidth

  • Kang, In-Ho (Dept. of Radio Engineering Korea Maritime University) ;
  • Wang, Kai (Dept. of Radio Engineering Korea Maritime University) ;
  • Li, Shang MIng (Dept. of Radio Engineering Korea Maritime University)
  • Received : 2010.03.31
  • Accepted : 2010.08.30
  • Published : 2010.09.30

Abstract

Modified compact combline bandpass filters are proposed based on the miniaturized quarter-wave transmission line which is composed of the parallel coupled line and lumped capacitors. The electrical length of the parallel coupled line in a resonator, which determines the size of combline bandpass filters, is just $5^{\circ}$ or $7^{\circ}$, resulting in a compact circuit area. The designed combline bandpass filter also has a wide upper stopband by suppressing the spurious passbands, not moving. Measured results of two fabricated filters centered at 400MHz show good agreement with the theoretical predications.

Keywords

References

  1. Cohn S. B.(1958), “Parallel coupled transmission line resonators,” IRE MTT Vol. 6-4, pp. 223-231 https://doi.org/10.1109/TMTT.1958.1124542
  2. Djaiz A. and Denidni T. A. (2006), “A new compact microstrip two-layer bandpass filter using apertured-coupled SIR-hairpin resonators with transmission zeros,” IEEE Trans. Microwave Theory Tech., vol.54, no.5, pp.1929-1936 https://doi.org/10.1109/TMTT.2006.872797
  3. Garcia J. G. and Bonache J. (2006), “Miniaturized microstrip and CPW filters using coupled metamaterial resonators,” IEEE Trans. Microwave Theory Tech., vol. 54. no. 6. pp. 2628-2635 https://doi.org/10.1109/TMTT.2006.872934
  4. Hong J. S. and Lancaster M.J. (1998), “Cross-coupled microstrip hairpin-resonator filters,” IEEE Trans. Microwave Theory Tech., vol. 46, no. 1, pp. 118-122. https://doi.org/10.1109/22.654931
  5. Hong J. S. and Lancaster M. J. (1997), “Theory and experiment of novel microstrip slow-wave open-loop resonator filters,” IEEE Trans. Microwave Theory Tech., vol. 45, no. 12, pp. 2358–2365 https://doi.org/10.1109/22.643844
  6. Hong J. S. and Lancaster M. J. (1996), “Cross-coupled microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 11, pp. 2099–2109 https://doi.org/10.1109/22.543968
  7. Ju L. H., Bhattacharya P., Katehi L.P.B. (1984), “X-band and K-band lumped Wilkinson power dividers with a micromachined technology” IEEE MTT-S Digest, pp.409-411
  8. Kang I. H. and Park J. S. (2003), “A reduced-size power divider using the coupled line equivalent to a lumped inductor,” Microwave Journal, vol. 46, no. 7
  9. Kang I. H. and Xu H. Y. (2007), “An Extremely Miniaturized Microstrip Bandpass Filter,” Microwave Journal, vol. 50, no. 5, pp. 228–233
  10. Kang, I., Wang, S., Yun, Y., Jhang, H. (2008) "Theoretical analysis on attenuation of the 5 GHz miniaturized GaAs MMIC bandpas filter", Microwave Journal, August,
  11. Kuo J. T., Chen S. P. and Jiang M. (2003), “Parallel-coupled microstrip filters with over-coupled end stages for suppression of spurious responses,” IEEE Trans. Microwave Theory Tech., vol. 13, no. 10, pp. 440-442 https://doi.org/10.1109/LMWC.2003.818531
  12. Kuo J. T., Jiang M. and Chang H. J. (2004), “Design of parallel-coupled microstrip filters with suppression of spurious resonances using substrate suspension,” IEEE Trans. Microwave Theory Tech., vol .52, no. 1, pp.83-89 https://doi.org/10.1109/TMTT.2003.821247
  13. Kuo J. T. and Shih E. (2003), “Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth,” IEEE Trans. Microwave Theory Tech., vol.51, no.5, pp. 1554-1559 https://doi.org/10.1109/TMTT.2003.810138
  14. Kong Y. W. and Chew S.T. (2004), “A miniaturizedend-coupled filter using stepped-impedance resonators,” Micro. Opt. Technol. .Lett., Vol. 46, no. 2, pp. 97-99 https://doi.org/10.1002/mop.20912
  15. Lin Y. S. and Wang C. H. (2005), “Novel compactparallel-coupled microstrip bandpass filters with lumped-element K-inverters,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 7, pp. 2324–2328 https://doi.org/10.1109/TMTT.2005.850445
  16. Lopetegi T. and Laso M. A. G. (2001), “New microstrip wiggly line filters with spurious passband suppression,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 9, pp. 1593-1598 https://doi.org/10.1109/22.942571
  17. Matthaei G., Young L. and Jones E.M.T. (1980), Microwave Filters, Impedance Matching Networks and Coupling Structures, Artech House Inc., Norwood, MA 1980, p. 500.
  18. Matthaei G., Young L. and Jones E.M.T. (1980), Microwave Filters, Impedance Matching Networks and Coupling Structures, Artech House Inc., Norwood, MA 1980, p. 433
  19. Makimoto M. and Yamashita S. (1980), “Bandpass filters using parallel coupled strip-line stepped impedance resonators,” IEEE Trans. Microwave Theory Tech., vol. MTT-28, no. 12, pp. 1413–1417 https://doi.org/10.1109/TMTT.1980.1130258
  20. Pang H. K. and Ho K. M. (2004), “A compact microstrip λ/4-SIR interdigial bandpass filter with extended stopband,” IEEE MTT-S Digest, pp. 1621–1624
  21. Pistono E., Robert M. and Duvillaret L. (2006), “Compact fixed and tune-all bandpass filters based on coupled slow-wave resonators,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 6, pp. 2790-2799 https://doi.org/10.1109/TMTT.2006.874894
  22. Sagawa M., Takahashi K., and Makimoto M. (1989), "Miniaturized hairpin resonator filers and their application to receiver fron-end MIC’s," IEEE Trans. Microwave Theory Tech., vol..37, no.12, pp. 1991-1997 https://doi.org/10.1109/22.44113
  23. Tang C. W., Lin Y. C. and Chang C. Y. (2003), “Realization of transmission zeros in combline filters using an auxiliary inductively coupled ground plane,” IEEE Trans. Microwave Theory Tech., vol.51, no.10, pp.2112-2118 https://doi.org/10.1109/TMTT.2003.817447
  24. Tang C. W and S. F, You(2006), “Design Methodologies of LTCC bandpass filters, diplexer, and triplexer with transmission zeros,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 2, pp. 717-723 https://doi.org/10.1109/TMTT.2005.862638
  25. Wang S. M., Chi C. H. and Hsieh M. Y. (2005), “Miniaturized spurious passband suppression microstrip filter using meandered parallel coupled lines,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 2, pp. 747-753 https://doi.org/10.1109/TMTT.2004.840619
  26. Wang X., Liu P., and Li Y. (2004), “New compact configuration of a stepped-impedance ceramic bandpass filter,” Micro. Opt. Technol.Lett., Vol. 41, no. 2, pp. 146-149 https://doi.org/10.1002/mop.20075
  27. Wang, X. G., Yun, Y. and Kang, I. H.(2009), “Compact Multi-harmonic Suppression LTCC Bandpass Filter Using Parallel Short-ended Coupled Line Structure,” ETRI Journal, vol. 30, no.3, June p. 254-262.
  28. Yao H. W. and Wang C., and Zaki K. A. (1996), c“Quarter wavelength ceramic combline filters,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 12, pp. 2673-2679 https://doi.org/10.1109/22.554625
  29. Zhang H. L. and Chen K. J. (2006), “Miniaturized coplanar waveguide bandpass filters using multisection stepped-impedance resonators,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 3, pp. 1090-1095 https://doi.org/10.1109/TMTT.2005.864126