금(金) 광산(鑛山) 폐광미(廢鑛尾)로부터 회수(回收)된 금속광물(金屬鑛物) 부산물(副産物) 중의 금속성분(金屬成分) 분리(分離), 제거연구(除去硏究)

Removal and Separation of Metallic Constituents from the By-product Recovered from Gold Mine Tailings

  • Youn, Ki-Byoung (Department of Materials Science & Engineering, Incheon University)
  • 투고 : 2010.01.25
  • 심사 : 2010.04.26
  • 발행 : 2010.06.30

초록

국내 금 광산 폐광미로부터 비금속광물을 분리, 선별하는 공정 중에서 황비철광, 방연광 등이 혼합된 금속광물이 부산물로 회수되며, 이 부산물에는 Au, Pb, As, Fe 성분들이 매우 높게 농축되어진다. 이 부산물로부터 Au의 효율적 회수를 위해서는 우선 금 제련공정에 해로운 거동을 나타내는 금속성분들을 분리, 제거할 필요가 있다. 본 연구에서는 금 광산 폐광미로부터 회수된 금속광물 부산물로부터 Pb, As, Fe등을 제거, 분리하는 실험을 수행하였다. Pb는 알칼리 가압산화침출에 의하여 $120^{\circ}C$, 2M NaOH, 100psi $Po_2$, 250r.p.m., 4 wt.% 고체, 30 min. 침출조건에서 3% 이하 까지 제거시킬 수 있었으며, 침출잔사를 배소 및 자력선별처리하여 As 0.2% 이하, Fe 3% 이하 및 8,000 ppm 이상의 Au 함량을 갖는 비자성산물을 얻을 수 있었다.

Domestic gold mine tailings, generally, contain a lot of non-metallic silica and clay minerals. These minerals can be separated from the tailings by various physical separation methods and used as raw materials for cements and ceramic products. In these physical separation procedures, metallic complex sulfides, in which Au and metallic constituents such as Pb, As and Fe were concentrated, were obtained as a by-product. These metallic constituents should be removed or separated from the by-product to extract Au efficiently. In this work, removal and separation processes of Pb, As, and Fe from the by-product were investigated. Pb was removed to under 3% by using alkaline oxidative leaching at the leaching condition of $120^{\circ}C$, 2M NaOH, 100psi $Po_2$, 250r.p.m., 4 wt.% solid and 30 min. leaching time. The leached residue was roasted and separated magnetically to obtain a non-magnetic product contained <0.2% As, <3% Fe and high concentrated Au more than 8,000 ppm.

키워드

참고문헌

  1. 채영배, 정수복, 윤평란., 1999: 금 광산 폐광미로부터 유가자원 회수에 관한 연구, 자원리싸이클링, 8(3), pp.37-42
  2. Berezowsky, R, J. et al., 1984: Pressure Oxidation Pretreament of Refractory Gold, Miner. & Metall. Process., 1(1), pp. 1-4.
  3. Bruynesteyn, A., 1984: Bio-Leaching of Refratory GoldSilver Ores, Paper in Leac hing Unit Operations and Processes CIM(Proc. 14th), pp. 9.
  4. Laksmanan, V. I., and D. Bosch., 1984: Treatment of Refractory Gold Ores, Miner. & Metall. Process., pp. 16.
  5. Fernandez, P.G and Linge, H.G and Wadsley, M.W., 1996: Oxidation of Arsenop yrite(FeAsS) in Acid Part I: Reactivity of Arsenopyrite, Journal of Applied Electrochemistry, 26(6), pp. 575-583. https://doi.org/10.1007/BF00253455
  6. Fernandez, P.G. Linge, H.G. and Willing, M.J., 1996: Oxidation of Arsenopyrite (FeAsS) in Acid Part II: Stoichiometry and Reaction Scheme, Journal of Applied Electrochemistry, 26(6), pp. 585-591. https://doi.org/10.1007/BF00253456
  7. Linge, H.G and Welham, N.J., 1997: Gold Recovery from a Refractory Arsenopyrite (FeAsS) Concentrate by in-situ Slurry Oxidation, Minerals Engineering, 10(6), pp. 557-566 https://doi.org/10.1016/S0892-6875(97)00035-6
  8. Achimovicova, M. and Balaz, P., 2005: Influence of Mechanical Activation on Selecti vity of Acid Leaching of Arsenopyrite, Hydrometallurgy, 77, pp.3-7. https://doi.org/10.1016/j.hydromet.2004.09.008
  9. Bhakta, P. et al, 1989: Alkaline Oxidative Leaching of Goldbearing Arsenopyrite Ores, Report of Investigations 9258 US Bureau of Mines, pp. 1-12.
  10. Sill, H. A., 1960: Process for Treating Complex Ores, US Pat. 2,951,741, Sept. 6.
  11. Wadsworth, M. E., 1985: Sulfide and Metal Leaching Reactions, Trans. of the Ame rican Institute of Min. Met. and Pet. Eng. Soc., 278, pp. 557-562.
  12. Irma Cisneros-Gonzalez et al., 2000: An Electrochemical Study of Galena Conce ntrate in Perchlorate Medium at pH 2.0: the Influellce of Chloride Ions, Electrochimica Acta, 45, 2729-2741. https://doi.org/10.1016/S0013-4686(00)00392-3
  13. Zhang, S. et aI., 2004: Dissolution Killetics of Galena in Acid NaCl Solutions at $25-75^{\circ}C$, Applied Geochemistry, 19(6), pp. 835-841. https://doi.org/10.1016/j.apgeochem.2003.10.005