DOI QR코드

DOI QR Code

Changes in surface roughness of bracket and wire after experimental sliding - preliminary study using an atomic force microscopy

브라켓과 탄선 간의 마찰 전후 표면 변화 분석 - 원자현미경을 이용한 예비연구

  • Lee, Tae-Hee (Department of Orthodontics, Kyung-Hee University School of Dentistry) ;
  • Park, Ki-Ho (Department of Orthodontics, Kyung-Hee University School of Dentistry) ;
  • Jeon, Ji-Yun ;
  • Kim, Su-Jung (Department of Orthodontics, Kyung-Hee University School of Dentistry) ;
  • Park, Hun-Kuk (Department of Biomedical Engineering, Kyung-Hee University School of Medicine) ;
  • Park, Young-Guk (Department of Orthodontics, Kyung-Hee University School of Dentistry)
  • 이태희 (경희대학교 치의학전문대학원 교정학교실) ;
  • 박기호 (경희대학교 치의학전문대학원 교정학교실) ;
  • 전지윤 ;
  • 김수정 (경희대학교 치의학전문대학원 교정학교실) ;
  • 박헌국 (경희대학교 의학전문대학원 의공학교실) ;
  • 박영국 (경희대학교 치의학전문대학원 교정학교실)
  • Received : 2009.11.02
  • Accepted : 2010.02.17
  • Published : 2010.06.30

Abstract

Objective: The surface roughness of orthodontic materials is an essential factor that determines the coefficient of friction and the effectiveness of tooth movement. The aim of this study is to evaluate the surface roughness change of the brackets and wires after experimental sliding quantitatively. Methods: Before and after experimental sliding tests, the surface roughness of stainless steel brackets, ceramic brackets, stainless steel wires, and beta-titanium (TMA) wires were investigated and compared using atomic force microscopy (AFM). Results: After sliding tests, changes in the surface of the wire were greater than changes in the bracket slot surface. The surface roughness of the stainless steel bracket was not significantly increased after sliding test, whereas the roughness of ceramic brackets was decreased. Both the surface roughness of stainless steel and TMA wires were increased after sliding test. More changes were observed on the ceramic bracket than the stainless steel bracket. Conclusions: AFM is a valuable research tool when analyzing the surface roughness of the brackets and wires quantitatively.

브라켓과 호선 간에 발생하는 마찰은 치아 이동의 효율에 상당한 영향을 미친다. 마찰력에 기여하는 요소 중 특히 브라켓과 호선의 표면조도는 중요한 요소이다. 본 연구는 브라켓과 탄선을 실험적으로 마찰시킨 후, 원자현미경 (atomic force microscope, AFM)을 사용하여 브라켓 슬롯과 교정용 탄선의 표면 조도 변화를 정성적, 정량적으로 측정하고 비교 평가하여 브라켓과 호선 간의 마찰이 각각의 표면 변화에 미치는 영향을 규명하고자 시행되었다. 스테인리스 스틸 브라켓과 세라믹 브라켓에 각각 스테인리스 스틸 탄선과 TMA 탄선을 실험적으로 활주마찰시킨 후 각각을 원자현미경을 이용하여 표면을 관찰하였다. 실험결과 브라켓보다는 교정용 탄선에서 활주마찰 후에 더 많은 표면 변화가 나타났다. 또한 활주마찰 후에 스테인리스 스틸 브라켓은 표면 조도의 유의한 변화가 없었으나 세라믹 브라켓은 표면 조도가 감소하였다. 그리고 교정용 탄선은 모두 활주마찰 후에 표면 조도가 증가하였으며 이러한 표면 변화는 스테인리스 스틸 브라켓보다 세라믹 브라켓과의 활주마찰 후에 더 큰 것으로 관찰되었다. 본 실험으로 원자현미경은 브라켓 슬롯과 탄선의 표면 조도를 정량적으로 측정하는 데에 유용한 수단임을 알 수 있었다.

Keywords

References

  1. Frank CA, Nikolai RJ. A comparative study of frictional resistances between orthodontic bracket and arch wire. Am J Orthod 1980;78:593-609. https://doi.org/10.1016/0002-9416(80)90199-2
  2. Angolkar PV, Kapila S, Duncanson MG Jr, Nanda RS. Evaluation of friction between ceramic brackets and orthodontic wires of four alloys. Am J Orthod Dentofacial Orthop 1990;98:499-506.
  3. Kapur Wadhwa R, Kwon HK, Sciote JJ, Close JM. Frictional resistance in ceramic and metal brackets. J Clin Orthod 2004;38:35-8.
  4. Kapila S, Angolkar PV, Duncanson MG Jr, Nanda RS. Evaluation of friction between edgewise stainless steel brackets and orthodontic wires of four alloys. Am J Orthod Dentofacial Orthop 1990;98:117-26. https://doi.org/10.1016/0889-5406(90)70005-W
  5. Peterson L, Spencer R, Andreasen G. A comparison of friction resistance for Nitinol and stainless steel wire in edgewise brackets. Quintessence Int Dent Dig 1982;13:563-71.
  6. Stannard JG, Gau JM, Hanna MA. Comparative friction of orthodontic wires under dry and wet conditions. Am J Orthod 1986;89:485-91. https://doi.org/10.1016/0002-9416(86)90006-0
  7. Thorstenson GA, Kusy RP. Comparison of resistance to sliding between different self-ligating brackets with second-order angulation in the dry and saliva states. Am J Orthod Dentofacial Orthop 2002;121:472-82. https://doi.org/10.1067/mod.2002.121562
  8. Kusy RP, Whitley JQ. Assessment of second-order clearances between orthodontic archwires and bracket slots via the critical contact angle for binding. Angle Orthod 1999;69:71-80.
  9. Sims AP, Waters NE, Birnie DJ, Pethybridge RJ. A comparison of the forces required to produce tooth movement in vitro using two self-ligating brackets and a pre-adjusted bracket employing two types of ligation. Eur J Orthod 1993;15:377-85. https://doi.org/10.1093/ejo/15.5.377
  10. Dowling PA, Jones WB, Lagerstrom L, Sandham JA. An investigation into the behavioural characteristics of orthodontic elastomeric modules. Br J Orthod 1998;25:197-202. https://doi.org/10.1093/ortho/25.3.197
  11. Ireland AJ, Sherriff M, McDonald F. Effect of bracket and wire composition on frictional forces. Eur J Orthod 1991;13:322-8. https://doi.org/10.1093/ejo/13.4.322
  12. Andreasen GF, Quevedo FR. Evaluation of friction forces in the 0.022${\times}$ 0.028 edgewise bracket in vitro. J Biomech 1970;3:151-60. https://doi.org/10.1016/0021-9290(70)90002-3
  13. Baker KL, Nieberg LG, Weimer AD, Hanna M. Frictional changes in force values caused by saliva substitution. Am J Orthod Dentofacial Orthop 1987;91:316-20. https://doi.org/10.1016/0889-5406(87)90173-9
  14. Riley JL, Garrett SG, Moon PC. Frictional forces of ligated plastic and metal edgewise brackets. J Dent Res 1979;58:A21.
  15. Bourauel C, Fries T, Drescher D, Plietsch R. Surface roughness of orthodontic wires via atomic force microscopy, laser specular reflectance, and profilometry. Eur J Orthod 1998;20:79-92. https://doi.org/10.1093/ejo/20.1.79
  16. Tanne K, Matsubara S, Hotei Y, Sakuda M, Yoshida M. Frictional forces and surface topography of a new ceramic bracket. Am J Orthod Dentofacial Orthop 1994;106:273-8. https://doi.org/10.1016/S0889-5406(94)70047-8
  17. Saunders CR, Kusy RP. Surface topography and frictional characteristics of ceramic brackets. Am J Orthod Dentofacial Orthop 1994;106:76-87. https://doi.org/10.1016/S0889-5406(94)70024-9
  18. Pratten DH, Popli K, Germane N, Gunsolley JC. Frictional resistance of ceramic and stainless steel orthodontic brackets. Am J Orthod Dentofacial Orthop 1990;98:398-403. https://doi.org/10.1016/S0889-5406(05)81647-6
  19. Zinelis S, Eliades T, Eliades G, Makou M, Silikas N. Comparative assessment of the roughness, hardness, and wear resistance of aesthetic bracket materials. Dent Mater 2005;21:890-4. https://doi.org/10.1016/j.dental.2005.03.007
  20. Prososki RR, Bagby MD, Erickson LC. Static frictional force and surface roughness of nickel-titanium arch wires. Am J Orthod Dentofacial Orthop 1991;100:341-8. https://doi.org/10.1016/0889-5406(91)70072-5
  21. Kusy RP, Whitley JQ, Mayhew MJ, Buckthal JE. Surface roughness of orthodontic archwires via laser spectroscopy. Angle Orthod 1988;58:33-45.
  22. Horton CB, Paulus HM, Pelleu GB, Rudolph JJ. An evaluation of commercial pastes for finishing composite resin surfaces. J Presthet Dent 1977;37:674-9. https://doi.org/10.1016/0022-3913(77)90218-9
  23. Roulet JF, Roulet-Mehrens TK. The surface roughness of restorative materials and dental tissues after polishing with prophylaxis and polishing pastes. J Periodontol 1982;53:257-66. https://doi.org/10.1902/jop.1982.53.4.257
  24. Cassinelli C, Morra M. Atomic force microscopy studies of the interaction of a dentin adhesive with tooth hard tissue. J Biomed Mater Res 1994;28:1427-31. https://doi.org/10.1002/jbm.820281207
  25. Marshall GW Jr, Balooch M, Tench RJ, Kinney JH, Marshall SJ. Atomic force microscopy of acid effects on dentin. Dent Mater 1993;9:265-8. https://doi.org/10.1016/0109-5641(93)90072-X
  26. Marshall GW Jr, Balooch M, Kinney JH, Marshall SJ. Atomic force microscopy of conditioning agents on dentin. J Biomed Mater Res 1995;29:1381-7. https://doi.org/10.1002/jbm.820291109
  27. Hansma PK, Elings VB, Marti O, Bracker CE. Scanning tunneling microscopy and atomic microscopy: application to biology and technology. Science 1988;242:209-16. https://doi.org/10.1126/science.3051380
  28. Blanchard CR. Atomic force microscopy. Chem Educator 1996;1:1-8.
  29. Lal R, John SA. Biological applications of atomic force microscopy. Am J Physiol 1994;266:C1-21.
  30. Radmacher M, Tillamnn RW, Fritz M, Gaub HE. From molecules to cells: imaging soft samples with the atomic force microscope. Science 1992;257:1900-5. https://doi.org/10.1126/science.1411505
  31. Ohnesorge F, Binnig G. True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science 1993;260:1451-6. https://doi.org/10.1126/science.260.5113.1451
  32. Drake B, Prater CB, Weisenhorn AL, Gould SA, Albrecht TR, Quate CF, et al. Imaging crystals, polymers, and processes in water with the atomic force microscopy. Science 1989;243:1586-9. https://doi.org/10.1126/science.2928794
  33. Kim HS, Woo YH. A study on surface roughness of composite resins after finishing and polishing. J Korean Acad Prosthodont 1997;35:719-41.
  34. Park KH. Surface analysis about bracket slots for orthodontics by AFM. [Dissertation]. Seoul: Kyung Hee University; 2009.
  35. Je YJ, Chang MH, Lim YK, Lee DY. Evaluation of friction of esthetic brackets according to different bracket-wire angulations. Korean J Orthod 2007;37:341-50.
  36. Matasa CG. Biomaterials in orthodontics. In: Graber TM, Vanarsdall RL editor. Orthodontics: current principles and techniques. 3rd ed. St. Louis: Mosby; 2000. p. 331-2.

Cited by

  1. An In Vivo Randomized Clinical Evaluation of the Surface Morphology of Nickel–Titanium, Beta-titanium, and Copper–Nickel–Titanium vol.21, pp.6, 2010, https://doi.org/10.5005/jp-journals-10024-2818