계단형 게이트 구조를 이용한 AlGN/GaN HEMT의 전류-전압특성 분석

Analysis of Current-Voltage characteristics of AlGaN/GaN HEMTs with a Stair-Type Gate structure

  • 김동호 (고려대학교 전자전기 공학과) ;
  • 정강민 (고려대학교 전자전기공학과) ;
  • 김태근 (고려대학교 전자전기공학과)
  • Kim, Dong-Ho (School of Electronics and Electrical Engineering, Korea University) ;
  • Jung, Kang-Min (School of Electronics and Electrical Engineering, Korea University) ;
  • Kim, Tae-Geun (School of Electronics and Electrical Engineering, Korea University)
  • 투고 : 2009.10.21
  • 심사 : 2010.04.26
  • 발행 : 2010.06.25

초록

본 논문에서는 고출력 고이득 특성을 갖는 고전자이동도 트랜지스터 (high-electron mobility transistor, HEMT)를 구현하기 위하여 계단형 구조의 게이트 전극을 갖는 AlGaN/GaN HEMT를 제안하였고, 소자의 DC 특성의 향상 가능성을 확인하기 위하여 단일 게이트 전극을 갖는 HEMT 및 field-plate 구조의 게이트 전극을 갖는 HEMT 소자와의 특성을 비교 분석하였다. 상용 시뮬레이터를 통해 시뮬레이션 결과, 본 연구에서 제안한 계단형 구조의 게이트 전극을 갖는 AlGaN/GaN HEMT는 드레인 전압의 인가 시, 소자의 내부에서 발생하는 전계가 단일 게이트 전극을 갖는 HEMT에 비해 약 70% 정도 감소하는 특성을 갖는 것을 확인하였고, 전달이득 (transconductance, $g_m$) 특성 역시 단일 게이트 전극구조의 HEMT나 field-plate 구조를 삽입한 HEMT에 비해 약 11.4% 정도 향상된 우수한 DC 특성을 갖는 것을 확인하였다.

We present simulation results on DC characteristics of AlGaN/GaN HEMT having stair-type gate electrodes, in comparison with those of the conventional single gate AlGaN/GaN HEMTs and field-plate enhanced AlGaN/GaN HEMTs. In order to reduce the internal electric field near the gate electrode of conventional HEMT and thereby to increase their DC characteristics, we applied three-layered stacking electrode schemes to the standard AlGaN/GaN HEMT structure. As a result, we found that the internal electric field was decreased by 70% at the same drain bias condition and the transconductance (gm) was improved by 11.4% for the proposed stair-type gate AlGaN/GaN HEMT, compared with those of the conventional single gate and field-plate enhanced AlGaN/GaN HEMTs.

키워드

참고문헌

  1. U. K. Mishra, P. Parikh, and Y.-F. Wu, "AlGaN/GaN HEMTs - an overview of device operation and applications," In Proceedings of IEEE, Vol. 90, pp. 1022-1031, 2002. https://doi.org/10.1109/JPROC.2002.1021567
  2. Egawa T, Ishikawa H, Umeno M, and Jimbo T, "Recessed gate AlGaN/GaN modulation-doped field-effect transistors on sapphire," Appl Phys Lett, Vol. 76, pp. 121-123, 2000. https://doi.org/10.1063/1.125676
  3. Ohno Y, Kuzuhara M, "Application of GaN-based heterojunction FETs for advanced wireless communication," IEEE Trans Electron Dev, Vol. 48, pp. 517-523, 2001. https://doi.org/10.1109/16.906445
  4. Keller S, Yi-Feng Wu, Parish G., Naiqian Ziang, Xu J. J, Keller B. P, DenBaars, S. P, Mishra U. K., "Gallium nitride based high power heterojunction field effect transistors: process development and present status at UCSB," IEEE Trans Electron Dev, Vol. 48, pp. 552-559, 2001. https://doi.org/10.1109/16.906450
  5. M. S. Shur, "GaN based transistors for high power applications," Solid-State Electronics, Vol. 42, pp. 2131-2138, 1998. https://doi.org/10.1016/S0038-1101(98)00208-1
  6. J. M. Redwing, M. A. Tischler, J. S. Flynn, S. Elhamri, M. Ahoujja, R. S. Newrock, and W. C. Mitchel, "Two-dimensional electron gas properties of AlGaN/GaN heterostructures grown on 6H - SiC and sapphire substrates," Appl Phys Lett, Vol. 69, pp. 963-965, 1996. https://doi.org/10.1063/1.117096
  7. S. Arulkumaran, T. Egawa, and H. Ishikawa, "Studies of AlGaN/GaN high-electron-mobility transistors on 4-in. diameter Si and sapphire substrates," Solid-State Electronics, Vol. 49, PP. 1632-1638, 2005. https://doi.org/10.1016/j.sse.2005.08.014
  8. P. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. Luth, and P. Kordos, "AlGaN/GaN HEMTs on (111) Silicon Substrates," IEEE Electron Device Letters, Vol. 23, pp. 4-6, 2002. https://doi.org/10.1109/55.974794
  9. B. J. Thibeault, B. P. Keller, P. Fini, U. K. Mishra, C. Nguyen, N. X. Nguyen, and M. Le, "High performance and large area flip-chip bonded AlGaN - GaN MODFETs," in IEDM Tech. Dig., pp.569-572, 1997.
  10. V. M. Asnin, F. H. Pollak, J. Ramer, M. Schurman, and I. Ferguson, "High spatial resolution thermal conductivity of lateral epitaxial overgrown GaN - sapphire (0001) using a scanning thermal microscope," Appl. Phys. Lett., Vol. 75, pp. 1240-1242, 1999. https://doi.org/10.1063/1.124654