DOI QR코드

DOI QR Code

커먼레일 디젤엔진의 운전조건이 나노크기 입자상 물질 배출특성에 미치는 영향에 관한 실험적 연구

Experimental Investigation of Nano-sized Particulate Matter Emission Characteristics under Engine Operating Conditions from Common Rail Diesel Engine

  • 투고 : 2010.02.05
  • 심사 : 2010.05.12
  • 발행 : 2010.05.31

초록

본 논문은 커먼레일 디젤엔진의 정속운전시 배출되는 나노크기의 입자상 물질을 분석하는데 초점을 두었다. 디젤산화촉매 후단에서 나노입자상 물질의 개수농도 저감수준은 크지 않았으나 매연여과장치 후단에서 분석한 결과 1,000배 정도 저감되는 결과를 확인하였다. 고속 고부하 조건에서는 매연여과장치의 자연재생 효과로 인해 입자상 물질은 증가하였다. 연료분사시기를 BTDC $6^{\circ}CA$ 에서 ATDC $4^{\circ}CA$까지 지각시킨 결과 입자상 물질의 개수농도는 감소하였지만 최지각 조건인 ATDC $9^{\circ}CA$에서는 증가하는 결과를 확인하였다. EGR 적용시 핵화모드 입자상 물질은 저감되는 경향을 보였으며 축적모든 입자는 증가하였다.

The objective of this work presented here was experimental study of steadystate and cold start exhaust nano-sized particle characteristics from common rail diesel engine. The effect of the diesel oxidation catalyst (DOC) on the particle number reduction was insignificant, however, particle number concentration levels were reduced by 3 orders of magnitude into the downstream of diesel particulate filter (DPF). In high speed and load conditions, natural regeneration of trapped particle occurred inside DPF and it was referable to increase particle number concentration. As fuel injection timing was shifted BTDC $6^{\circ}CA$ to ATDC $4^{\circ}CA$, particle number concentration level was slightly reduced, however particle number and size was increased at ATDC $9^{\circ}CA$. Nucleation type particle reduced and accumulation type particle was increased on EGR condition.

키워드

참고문헌

  1. 張岳秋, 王建昕, 조행묵, "커먼레일 디젤엔진을 이용한 바이오디젤 연료의 연소 및 배출가스 특성", 한국마린엔지니어링학회지, 제33권, 제2호, pp. 252-258, 2009. https://doi.org/10.5916/jkosme.2009.33.2.252
  2. R. F. Sawyer(Chairman of CARB), Keynote speech, 17th CRC On-Road Vehicle Emission Workshop, 2007.
  3. J. Schwartz, "Air pollution and blood markers of cardiovascular risk," Environmental Health Perspectives, vol. 3, pp. 405-409, 2001.
  4. A. Peters, M. Frohlich, and A. Doring, "Particulate air pollution is associated with acute phase response in Men", European Heart Journal, vol. 22, pp. 1198-1204, 2001. https://doi.org/10.1053/euhj.2000.2483
  5. B. Giechakiel, R. Munoz-Bueno, L. Rubino, and J. Anderson, "Particulate measurement programme (PMP): Particle size and number emission before, during and after regeneration events of a Euro 4 DPF equipped light-duty diesel vehicle", SAE Paper No. 2007-01-1944, 2007.
  6. J. M. Desantes, V. Bermudez, J. M. Garcia, and E. Fuentes, "Effects of current engine strategies on the exhaust aerosol particle size distribution from a heavy-duty diesel engine," Journal of Aerosol Science", vol. 36, pp. 1251-1276, 1998.
  7. J. D. Andersson and G. A. W. Barbara, "Particle research program: Sampling and measurement experience", SAE Paper No. 2000-01-2850, 2000.
  8. J. Pagan, "Study of particle size distribution emitted by a diesel engine", SAE Paper No. 1999-01-1141, 1999.
  9. D. F. Andrea and M. M. Maricq, "Diesel nucleation mode particles: semivolatile or solid", Environmental Science and Technology, vol. 42, pp. 7597-7962, 2008.
  10. C. Tornatore, S. S Merola, B. M. Vaglieco, "Particle and nanoparticle characteristics at the exhaust of internal combustion engines", Proceedings of the Institution of Mechanical Engineers, vol. 222, Part D: Journal of Automobile Engineering, 2008.

피인용 문헌

  1. Effect of pre-post injection timing of diesel fuel for naval vessel on the combustion and emission characteristics in an optically-accessible single cylinder diesel engine vol.38, pp.7, 2014, https://doi.org/10.5916/jkosme.2014.38.7.868
  2. 자동차용 가솔린과 디젤 연료의 증류특성에 관한 연구 vol.18, pp.5, 2010, https://doi.org/10.9726/kspse.2014.18.5.011
  3. 선박용 디젤 엔진 수트의 발생원에 따른 구조적 특성 연구 vol.26, pp.1, 2010, https://doi.org/10.7837/kosomes.2020.26.1.114