지상레이저스캐너 데이터의 자동 글로벌 보정

Automatic Global Registration for Terrestrial Laser Scanner Data

  • 투고 : 2010.04.05
  • 심사 : 2010.04.26
  • 발행 : 2010.04.30

초록

본 연구에서는 지상레이저스캔 데이터의 보정을 위하여 변환 알고리즘을 비교하였다. 두 개 이상의 시점으로부터 취득된 스캔 데이터를 변환하는 데 많이 사용되는 pair-wise 변환은 오차가 누적된다. 스캔데이터간 보정에 많이 사용되는 ICP 알고리즘은 초기 기하정보가 필요하며, 여러 스캔데이터를 보정할 때 많은 기준점으로 인하여 동시에 보정하기 어렵다. 따라서 정합점을 이용한 글로벌 보정 방법을 수행하였다. 정합점은 SIFT를 이용하여 자동으로 강도영상으로부터 추출하였으며, GP 분석을 이용하여 글로벌 보정을 수행하였다. 제안된 글로벌 보정 방법은 연산속도, 정확도, 자동화 등에 있어서 장점을 지닌 것으로 나타났다. 본 연구의 성과를 이용하여 정합문제에 있어서 정확도와 속도를 적절히 고려한 보정방법을 개발할 수 있다.

This study compares transformation algorithms for co-registration of terrestrial laser scan data. Pair-wise transformation which is used for transformation of scan data from more than two different view accumulates errors. ICP algorithm commonly used for co-registration between scan data needs initial geometry information. And it is difficult to co-register simultaneously because of too many control points when managing scan at the same time. Therefore, this study perform global registration technique using matching points. Matching points are extracted automatically from intensity image by SIFT and global registration is performed using GP analysis. There are advantages for operation speed, accuracy, automation in suggested global registration algorithm. Through the result from it, registration algorithms can be developed by considering accuracy and speed.

키워드

참고문헌

  1. 전민철, 어양담, 한동엽, 강남기, 편무욱 (2010), 강도영상과 거리영상에 의한 건물 스캐닝 점군간 3차원 정합실험, 대한원격탐사학회지, 대한원격탐사학회, 제 26권, 제 1호, pp.39-45. https://doi.org/10.7780/kjrs.2010.26.1.39
  2. Beinat, A. and CrosiIla, F. (2002), A generalized factored stochastic model for the optimal global registration of LIDAR range images, IAPRS, ISPRS, 34(3B), pp. 36-39.
  3. Besl, P. and McKay, N. (1992), A Method for Registration of 3-D Shapes, IEEE Transaction on Pattern Analysis And Machine Intelligence, IEEE, Vol. 14, No.2, pp. 239-256. https://doi.org/10.1109/34.121791
  4. Fischler, M.A. and Bolles, R.C. (1981), Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the Association for Computing Machinery, ACM, Vol. 24, No.6, pp. 381-395. https://doi.org/10.1145/358669.358692
  5. Gruen, A. and Akca, D. (2005), Least squares 3D surface and curvc matching, ISPRS Journal of Photogrammetry and Remote Sensing, ISPRS, Vol. 59, No.3, pp. 151-174. https://doi.org/10.1016/j.isprsjprs.2005.02.006
  6. Hom, K.P. (1987), Closed-fonn solution of absolute orientation using unit quatemions, Journal of the Optical Society of America A, Optical Society of America, Vol. 4, No.4, pp. 629-642. https://doi.org/10.1364/JOSAA.4.000629
  7. Jason G. and Philip J. (2008), Multiview range-image registration for forested scenes using explicitly-matched tie points estimated from natural surfaces, ISPRS Journal of Photogrammetry and Remote Sensing, ISPRS, Vol. 63, No. 1, pp. 68-83. https://doi.org/10.1016/j.isprsjprs.2007.07.006
  8. Lowe, D.G. (2005), Demo Software: SIFT Keypoint Detector, http://people.cs.ubc.ca/-Iowe/keypoints
  9. Kortgen, M. (2006), Robust Automatic Registration of Range Images with Reflectance, Master's thesis, Computer Graphics Institute, University of Bonn, Germany.
  10. Wang, Y. and Wang G. (2008), Integrated Registration of Range Images from Terrestlial LIDAR, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS, Beijing, pp. 361-365.
  11. Williams, J. and Bennamoun, M. (2001), Simultaneous Registration of Multiple Corresponding Point Sets, Computer Vision and Image Understanding, CVIU, Vol. 81, No.1,pp.117-142. https://doi.org/10.1006/cviu.2000.0884