웨이퍼 클리닝 장비의 웨이퍼 장착 위치 인식 시스템

Wafer Position Recognition System of Cleaning Equipment

  • 이정우 (동서대학교 영상콘텐츠 학과) ;
  • 이병국 (동서대학교 컴퓨터정보공학부) ;
  • 이준재 (계명대학교 게임모바일컨텐츠학과)
  • 투고 : 2009.07.22
  • 심사 : 2009.11.24
  • 발행 : 2010.03.31

초록

본 논문에서는 반도체 생산 공정 중 클리닝 공정 설비에서, 웨이퍼의 장착 위치를 인식하는 영상 인식 시스템을 제안한다. 제안한 시스템은 웨이퍼의 위치 이탈에 따른 위치오차 발생 시 이를 클리닝 설비에 전달하여, 웨이퍼 클리닝 장비의 파손을 방지하여 시스템의 신뢰성과 경제성을 높이기 위한 것이다. 시스템의 주요 알고리즘은 카메라에 획득된 영상과 실제 웨이퍼간의 캘리브레이션 방법, 적외선 조명 및 필터 설계, 최소자승법 기반의 원 생성알고리즘에 의한 중심위치 판별법이다. 제안한 시스템은 고 신뢰성과 고 정밀의 위치인식 알고리즘을 사용하여, 효율적으로 웨이퍼 인라인 공정에 설치함을 목표로 하며 실험결과 충분한 허용 기준 내에서 오차를 검출해내는 좋은 성능을 보여준다.

This paper presents a position error recognition system when the wafer is mounted in cleaning equipment among the wafer manufacturing processes. The proposed system is to enhance the performance in cost and reliability by preventing the wafer cleaning system from damaging by alerting it when it is put in correct position. The key algorithms are the calibration method between image acquired from camera and physical wafer, a infrared lighting and the design of the filter, and the extraction of wafer boundary and the position error recognition resulting from generation of circle based on least square method. The system is to install in-line process using high reliable and high accurate position recognition. The experimental results show that the performance is good in detecting errors within tolerance.

키워드

참고문헌

  1. J. Leavey and P.J.S. Mangat, "Mask and wafer inspection and cleaning for proximity x-ray lithography," Proc. SPIE Vol.3331, pp.179-188, 1998.
  2. R. K. Nurani, R. Akella, A. J. Strojwas, R.Wallace, M. G. McIntyre, J. Shields, and I. Emami, "Development of an optimal sampling strategy for wafer in spection," International Symposium on Semiconductor Manufacturing, pp. 143-146, 1994.
  3. G. Ducotey, A. Couvrat, V. Audran, D. Pepper, and L.Couturier, "In-line methodology for defectivity analysis from dark field wafer in spection to defect root cause analysis using FIB cut," IEEE Advanced Semiconductor Manufacturing Conference(ASMC), pp. 138-141, 2008.
  4. Tianhe Yu, Qiuming Li, and Jingmin Dai, "New enhancement of infrared image based on human visual system," Chinese Optics Letters, Vol.7, No.3, pp. 206-209, 2009. https://doi.org/10.3788/COL20090703.0206
  5. Z. Zhang, "A flexible new technique for camera calibration," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.22, No.11, pp. 1330-1334, 2000. https://doi.org/10.1109/34.888718
  6. R. Sukthankar, R. Stockton and M. Mullin "Smarter presentation : Exploiting homography in camera- projector system," Proceedings of Eighth IEEE International Conference on Computer Vision(ICCV), Vol.1, pp. 247-253, 2001.
  7. G. Leach, "Improving worst-case optimal Delaunay triangulation algorithms," Proceedings of the 4th Canadian Conference on Computational Geometry, pp. 340-346, June 1992.
  8. F. H. Y. Chan, F. K. Lam and H. Zhu, "Adaptive thresholding by variation method," IEEE Transaction on Image Processing, Vol.2, No.3 pp. 168-147, Mar.
  9. Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, 2nd Edition, Prentice Hall, 2002.
  10. I. D. Coope, "Circle fitting by linear and nonlinear least squares," Journal of Optimization Theory and Applications, Vol.76, No.2, pp.381-388, 1993. https://doi.org/10.1007/BF00939613