DOI QR코드

DOI QR Code

Electrochemical Detection of Pesticide in Living Plant and Fish Brain Cell

  • Lee, Chang-Hyun (Division of General Education, Pyeongtaek University) ;
  • Ly, Suw-Young (Biosensor Research Institute,Seoul National University of Technology)
  • Received : 2010.05.03
  • Accepted : 2010.07.13
  • Published : 2010.08.31

Abstract

The three electrode system was used to detect the pesticide fenitrothion ($C_9H_{12}NO_5PS$. MW=277.24) using cyclic voltammetry (CV) and square wave anodic stripping voltammetry (SWASV). The working electrode was mercury immobilized on a carbon nanotube paste electrode (Hg-CNTPE). At the optimized condition, the limit of detection (LoD) was 0.6 ppt ($2.16{\times}10^{-12}\;M$), and the relative standard deviation was 0.035% (n=15). And there is more sensitive in detecting fenitrothion than common type carbon nanotube paste electrode. When it was implanted into the brain of live fish (carp), the existence of fenitrothion was measured without any destruction or damage of tissue.

Keywords

References

  1. Baroja, O., Unceta, N., Sampedro, M. C., Goicolea, M. A., Barrio, R. J., 2004, Optimization and validation of a method of analysis for fenitrothion and its main metabolites in forestry air samples using sorbent tubes with thermal desorption cold trap injection and gas chromatography-mass spectrometry, Journal of Chromatograph A., 1059, 165-170. https://doi.org/10.1016/j.chroma.2004.10.038
  2. Bhushan, B., Samanta, S. K., Chauhan, A., Chakraborti, A. K., Jain, R. K., 2000, Chemotaxis and Biodegradation of 3-Methyl-4-Nitrophenol by Ralstonia sp. SJ98, Biochemical and Biophysical Research Communications., 275, 129-133. https://doi.org/10.1006/bbrc.2000.3216
  3. Hernandez, F., Sancho, J. V., Pozo, O. J., 2004, An estimation of the exposure to organophosphorus pesticides through the simultaneous determination of their main metabolites in urine by liquid chromatography-tandem mass spectrometry, Journal of Chromatography B., 808, 229-239. https://doi.org/10.1016/j.jchromb.2004.05.019
  4. Khuder, S. A., Mutgi, A. B., Schaub, E. A., 1998, Meta-Analyses of Brain Cancer and Farming, American Journal of Industrial Medicine., 34, 252- 260. https://doi.org/10.1002/(SICI)1097-0274(199809)34:3<252::AID-AJIM7>3.0.CO;2-X
  5. Lambropoulou, D. A., Albanis, T. A., 2003, Headspace solid-phase microextraction in combination with gas chromatography-mass spectrometry for the rapid screening of organophosphorus insecticide residues in strawberries and cherries, Journal of Chromatography A., 993, 197-203. https://doi.org/10.1016/S0021-9673(03)00397-2
  6. Montesinos, T., Perez-Munguia, S., Valdez, F., Jean-Louis, M., 2001, Disposable cholinesterase biosensor for the detection of pesticides in water-miscible organic solvents, Analytica Chimica Acta., 431, 231-237. https://doi.org/10.1016/S0003-2670(00)01235-6
  7. Mulchandani, P., Chen, W., Mulchandani, A., Wang, J., Chen, L., 2001, Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase, Biosensors & Bioelectronics., 16, 433-437. https://doi.org/10.1016/S0956-5663(01)00157-9
  8. Neufeld, T., Eshkenazi, I., Cohen, E., Rishpon, J., 2000, A micro flow injection electrochemical biosensor for organophosphorus pesticides, Biosensors & Bioelectronics., 15, 323-329. https://doi.org/10.1016/S0956-5663(00)00073-7
  9. Ni, Y., Qiu, P., Kokot, S., 2006, Simultaneous determination of three organophosphorus pesticides by differential pulse stripping voltammetry and chemometrics, Analytica .,69,216-225.
  10. Reybier, K., Zairi, S., Jaffrezic-Renault, N., Fahys, B., 2002, The use of polyethyleneimine for fabrication of potentiometric cholinesterase biosensors, Talanta., 56, 1015-1020. https://doi.org/10.1016/S0039-9140(01)00588-4
  11. Sanchez-Ortega, A., Sampedro, M. C., Unceta, N., Goicolea,M. A., Barrio, R. J., 2005, Solid-phase microextraction coupled with high performance liquid chromatography using on-line diode-array and electrochemical detection for the determination of fenitrothion and its main metabolites in environmental water samples, Journal of Chromatography A., 1094, 70-76. https://doi.org/10.1016/j.chroma.2005.07.089
  12. SanLnchez, M. E., Estrada, I. B., Martinez, O., Martin-Villacorta, J., Aller, A., Moran, A., 2004, Influence of the application of sewage sludge on the degradation of pesticides in the soil, Chemosphere., 57, 673-679. https://doi.org/10.1016/j.chemosphere.2004.07.023
  13. Schellin, M., Hauser, B., Popp, P., 2004, Determination of organophosphorus pesticides using membraneassisted solvent extraction combined with large volume injection-gas chromatography-mass spectrometric detection, Journal of Chromatography A., 1040, 251-258. https://doi.org/10.1016/j.chroma.2004.04.006
  14. Schoning, M. J., Block, K. R., Musahmeh, K., Mulchandani, M., Wang, A. J., 2003, A dual amperometric/potentiometric FIA-based biosensor for the distinctive detection of organophosphorus pesticides, Sensors and Actuators B., 95, 291-296. https://doi.org/10.1016/S0925-4005(03)00426-X
  15. Settimi, L., Masina, A., Anderion, A., Axelson, O., 2003, Prostate Cancer And Exposure To Pesticide In Agricultural Settings, International Journal. Cancer., 104, 458-461. https://doi.org/10.1002/ijc.10955
  16. Shi, M., Xu, J., Zhang, S., Liu, B., Kong, J., 2006, A mediator-free screen-printed amperometric biosensor for screening of organophosphorus pesticides with flow-injection analysis (FIA) system, Talanta., 68, 1089-1095. https://doi.org/10.1016/j.talanta.2005.07.007
  17. Solna, R., Sapelnikova, S., Skladal, P., Winther-Nielsen, M. C., Carlsson, C. J., Emneus, J., Ruzgas,T., 2005, Multienzyme electrochemical array sensor for determination of phenols and pesticides, Talanta., 65, 349-357. https://doi.org/10.1016/j.talanta.2004.07.005
  18. Sotiropoulou, S., Chaniotakis, N. A., 2005, Lowering the detection limit of the acetylcholinesterase biosensor using a nanoporous carbon matrix, Analytica Chimica Acta., 530, 199-204. https://doi.org/10.1016/j.aca.2004.09.007
  19. Sudo, M., Kunimatsu, T., Okubo, T., 2002, Concentration and loading of pesticide residues in Lake Biwa basin (Japan), Water Research., 36, 345-329. https://doi.org/10.1016/S0043-1354(01)00196-8
  20. Tsoukali, H., Theodoridis, G., Raikos, N., Grigoratou, I., 2005, Solid phase microextraction gas chromatographic analysis of organophosphorus pesticides in biological samples, Journal of Chromatography B., 822, 194-200. https://doi.org/10.1016/j.jchromb.2005.05.035
  21. Vidal, J. C., Esteban, S., Gil, J., Castillo, J. R., 2006, A comparative study of immobilization methods of a tyrosinase enzyme on electrodes and their application to the detection of dichlorvos organophosphorus insecticide, Talanta., 68, 791-799. https://doi.org/10.1016/j.talanta.2005.06.038
  22. Zambonin, C. G., Quinto, M., De Vietro, N., Palmisano, F., 2004, Solid-phase microextraction. gas chromatography mass spectrometry: A fast and simple screening method for the assessment of organophosphorus pesticides residues in wine and fruit juices, Food Chemistry., 86, 269-274. https://doi.org/10.1016/j.foodchem.2003.09.025
  23. Zuin, V. G., Yariwake, J. H., Bicchi, C., 2003, Fast supercritical fluid extraction and high-resolution gas chromatography with electron-capture and flame photometric detection for multiresidue screening of organochlorine and organophosphorus pesticides in Brazil's medicinal plants, Journal of Chromatography A., 985, 159-166. https://doi.org/10.1016/S0021-9673(02)01400-0