DOI QR코드

DOI QR Code

Suppression Effect on Soft-rot by Bacteriocin-producing Avirulent Pectobacterium carotovorum subsp. carotovorum Pcc21-M15

박테리오신을 분비하는 비병원성 돌연변이주에 의한 무름병 방제 효과

  • Roh, Eun-Jung (Microbial Safety Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Seung-Don (Research Policy Bureau, RDA) ;
  • Heu, Sung-Gi (Microbial Safety Division, National Academy of Agricultural Science, RDA)
  • 노은정 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물과) ;
  • 이승돈 (농촌진흥청 연구운영과) ;
  • 허성기 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물과)
  • Received : 2010.06.15
  • Accepted : 2010.07.01
  • Published : 2010.08.01

Abstract

Pectobacterium carotovorum subsp. carotovorum causes soft rot disease in diverse plants. Carocin D is bacteriocin that is produced by Pectobacterium carotovorum subsp. carotovorum Pcc21 strain. Nonpathogenic mutant P. carotovorum subsp. carotovorum Pcc21-M15 strain was obtained by mutagenesis with Tn5 insertion and screened pathogenesity. P. carotovorum subsp. carotovorum Pcc21-M15 and E. coli (pRG3431), carocin D gene-transformed E. coli, produce carocin D against P. carotovorum subsp. carotovorum Pcc3. Pathogenic P. carotovorum subsp. carotovorum Pcc3 and mixture with Pcc21-M15 or E. coli (pRG3431) were treated with lettuces. Pcc21-M15 and E. coli (pRG3431) effectively suppressed the development of soft-rot disease. While symptoms in 90% of Pcc3-treated lettuces were observed after 3 days, only 25% of Pcc3 and Pcc21-M15-treated lettuces were observed to be infected after 6 days. These results suggest that the nonpathogenic strain P. carotovorum subsp. carotovorum. Pcc21-M15 and E. coli (pRG3431) are effective to soft-rot disease suppression.

Pectobacterium carotovorum subsp. carotovorum은 채소 무름병의 원인균이다. 박테리오신인 carocin D는 Pectobacterium carotovorum subsp. Carotovorum Pcc21 균주가 생산한다. Pcc21 균주의 비병원성인 돌연변이주를 선발하기 위해 Tn5을 이용하여 무작위적 삽입 돌연변이체들을 대상으로 병원성 검사를 하였다. 실험 결과 선발된 P. carotovorum subsp. carotovorum Pcc21-M15과 carocin D 유전자의 형질전환체인 E. coli(pRG3431)은 비병원성인 동시에 carocin D를 생산하여 무름병균인 P. carotovorum subsp. carotovorum Pcc3의 생장을 억제함을 확인하였다. Pcc21-M15와 E. coli (pRG3431)를 무름병균인 P. carotovorum subsp. carotovorum Pcc3과 함께 미네랄 오일법으로 상추에 처리한 결과 Pcc3 균주를 단독 처리했을 경우에는 3일만에 90%가 무름병에 걸린 반면, Pcc21-M15와 E. coli(pRG3431)를 함께 처리한 경우는 6일 후에도 25%의 상추에서만 무름병 증상을 보였다.

Keywords

References

  1. Abrehem, K. and Zamiri, I. 1985. Purification and characterization of a Corynebacterium ulcerans bacteriocin (ulceracin 378). J. Gen. Microbiol. 131: 707-713.
  2. Chuang, D. Y., Chien, Y. C. and Wu, H. P. 2007. Cloning and expression of the Erwinia carotovora subsp. carotovora gene encoding the low-molecular-weight bacteriocin carocin S1. J. Bacteriol. 189: 620-626. https://doi.org/10.1128/JB.01090-06
  3. Heu, S., Oh, J., Kang, Y., Ryu, S., Cho, S. K., Cho, Y. and Cho, M. 2001. Gly gene cloning and expression and purification of glycinecin A, a bacteriocin produced by Xanthomonas campestris pv. glycines 8ra. Appl. Environ. Microbiol. 67: 4105-4110. https://doi.org/10.1128/AEM.67.9.4105-4110.2001
  4. Kerr, A. and Tate, M. E. 1984. Agrocins and the biological control of crown gall. Microbiol. Sci. 1: 1-4.
  5. Lavermicocca, P., Lonigro, S. L., Valerio, F., Evidente, A. and Visconti, A. 2002. Reduction of olive knot disease by a bacteriocin from Pseudomonas syringae pv. ciccaronei. Appl. Environ. Microbiol. 68: 1403-1407. https://doi.org/10.1128/AEM.68.3.1403-1407.2002
  6. McClure, N. C., Ahmadi, A. R. and Clare, B. G. 1998. Construction of a range of derivatives of the biological control strain agrobacterium rhizogenes K84: a study of factors involved in biological control of crown gall disease. Appl. Environ. Microbiol. 64: 3977-3982.
  7. Morgan, S., Ross, R. P. and Hill, C. 1995. Bacteriolytic activity caused by the presence of a novel lactococcal plasmid encoding lactococcins A, B, and M. Appl. Environ. Microbiol. 61: 2995-3001.
  8. Riley, M. A. 1998. Molecular mechanisms of bacteriocin evolution. Annu. Rev. Genet. 32: 255-278. https://doi.org/10.1146/annurev.genet.32.1.255
  9. Riley, M. A. and Gordon, D. M. 1999. The ecological role of bacteriocins in bacterial competition. Trends Microbiol. 7: 129-133. https://doi.org/10.1016/S0966-842X(99)01459-6
  10. Roh, E., Lee, S., Lee, Y., Ra, D., Choi, J., Moon, E. and Heu, S. 2009. Diverse Antibacterial activity of Pectobacterium carotovorum subsp.carotovorum isolated in Korea. J. Microbiol. Biotechnol. 19: 42-50. https://doi.org/10.4014/jmb.0803.209
  11. Roh, E., Park, T., Lee, S., Ryu, S., Oh, C., Kim, D., Park, B. and Heu, S. 2010. Characterization of a new bacteriocin, carocin D, from Pectobacterium carotovorum subsp. carotovorum Pcc21. Appl. Environ. Microbiol. (submitted).
  12. Tagg, J. R., Dajani, A. S. and Wannamaker, L. W. 1976. Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40: 722-756.
  13. Whitehead, N. A., Byers, J. T., Commander, P., Corbett, M. J., Coulthurst, S. J., Everson, L., Harris, A. K., Pemberton, C. L., Simpson, N. J., Slater, H., Smith, D. S., Welch, M., Williamson, N. and Salmond, G. P. 2002. The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, antibiotics and ecological considerations. Antonie Van Leeuwenhoek 81: 223-231.

Cited by

  1. Selection of a Susceptible Line (Susceptible to Pectobacterium 1, Atstp1) to Soft-rot Disease in T-DNA Insertion Mutants Pool of Arabidopsis vol.16, pp.3, 2010, https://doi.org/10.5423/RPD.2010.16.3.312