유역 내에서의 산사태에 의한 토사발생특성 분석 1. 토사발생모의 및 검증

Analysis on Characteristics of Sediment Produce by Landslide in a Basin 1. Simulation of Sediment Produce and its Verification

  • 유철상 (고려대학교 공과대학 건축.사회환경공학과) ;
  • 김기욱 (노스캐롤라이나 주립 아팔라치안 대학교 지질학과) ;
  • 김성준 (건국대학교 생명환경과학대학 사회환경시스템공학과) ;
  • 이미선 (건국대학교 대학원 지역건설환경공학과)
  • 투고 : 2010.03.01
  • 심사 : 2010.04.14
  • 발행 : 2010.06.30

초록

본 연구에서는 강우에 기인하는 산사태에 의한 토사발생특성을 분석하였다. 이를 위해 1차원 불포화 지하수해석을 수행하여 강우에 따른 토양수분의 거동을 추정하였으며, 무한사면해석법을 이용하여 토양수분상태에 따른 유역단위 사면안정해석을 수행하였다. 사면안정해석에는 산사태의 발생 및 파괴깊이에 영향을 주는 토양심 및 여러 식생인자들을 함께 고려하였다. 파괴사면의 회복기간을 고려하여 연별토사발생량을 계산한 결과, 1963, 1970, 2002년에 유역 내에서 많은 양의 토사가 발생하였음을 알 수 있었다. 위성영상을 이용한 모의결과의 검증결과, 분석에 사용한 매개변수의 불확실성에 기인하여 위성영상과 모형을 이용한 결과에서 나타나는 산사태 발생위치에는 다소 차이를 보이는 것을 알 수 있었다. 하지만, 오봉댐유역을 왕산천과 도마천 유역으로 구분하는 경우, 이 둘 소유역 단위의 결과는 약 20% 전후의 오차를 가지는 것을 알 수 있었고, 전체유역에 대하여 비교하면 약 4%의 오차만을 가지는 것을 확인할 수 있었다. 위성영상을 이용한 토지피복분류과정상의 오차, 토지피복자료를 이용한 산사태 발생지역 구분과정상의 오차, 아울러 모형의 오차 등을 고려할 때, 이러한 오차는 매우 미미한 수준인 것으로 판단되며, 이를 통해 모형의 적용성을 확인할 수 있었다.

This study analyzed the characteristics of sediment produce by landslide triggered by rainfall. One-dimensional unsaturated groundwater model and infinite slope stability analysis were used to estimate the behavior of soil moisture and slope stability according to rainfall, respectively. Slope stability analysis was performed considering on soil depth and characteristics of trees. As the results considering on recovery of the failed slopes, much amount of sediment was produced in 1963, 1970, and 2002. As the results of verification of simulation results using Landsat 5 TM images, we can find differences of landslide location between the results from model and satellite images. These differences can be caused by uncertainties of the rough parameters in the model. However, in the case that Obong-dam basin was divided into two subbasin, Wangsan-chun and Doma-chun basin, the results of each subbasin show errors around 20%. And only 4% of error occurred in the case of comparing landslide area on the entire Obong-dam basin. These errors seem insignificant considering on the errors which can be caused from the analyses in this study such as estimation of sediment produce, soil cover classification, and estimation of landslide area.

키워드

참고문헌

  1. 건설교통부 (2003) 오봉댐 재개발 건설사업 타당성조사 보고서, pp.6-104.
  2. 국가수자원관리종합정보시스템(WAMIS) 홈페이지 (www.wamis.go.kr)
  3. 국립방재연구소 (2002) 2002 태풍 루사 피해 현장조사 보고서, pp.257.
  4. 국립방재연구소 (2003) 지리정보시스템을 이용한 사면붕괴 재해 연구, pp.80.
  5. 김기욱 (2008) 산사태에 의한 유역단위 토사발생특성에 관한 연구, 박사학위논문, 고려대학교.
  6. 김원영 (2001) 토석류의 발생원인과 예측. 방재연구, 국립방재연구소, 제3권, 제4호, pp.4-14.
  7. 김홍택, 김지호, 이혁진 (2001) GIS기법을 이용한 토석류의 발생위험도 분석에 관한 연구. 대한토목학회 학술발표회 논문집, 대한토목학회, pp.2886-2889.
  8. 이인모, 성상규, 임충모 (1991) 뿌리의 강도가 자연사면 안정에 미치는 영향에 관한 실험연구, 대한토질공학회지, 대한토질공학회, 제7권, 제2호, pp.51-66.
  9. 지병윤, 오재헌, 최병구, 전근우, 차두송 (2004) 수목의 근계구성에 따른 사면의 붕괴방지효과에 관한 연구(IV) -잣나무 뿌리의 인장특성-, 한국임학회지, 한국임학회, 제93권, 제1호, pp.103-107.
  10. 차두송, 지병윤 (2003) 수목의 근계구성에 따른 사면의 붕괴방지 효과에 관한 연구(III) - 잣나무 뿌리의 공간분포-. 한국임학회지, 한국임학회, 제92권, 제1호, pp.33-41.
  11. 한국건설기술연구원 (2002) 2002년 태풍 루사에 의한 강원도 지역 대홍수, pp.185-195.
  12. 한건연, 서승덕, 권순국, 최혁준 (2003). 이상강우에 의한 농업용 저수지의 홍수조절능력 분석. 한국수자원학회 학술발표회 논문집, 한국수자원학회, pp.209-212.
  13. Abe, K. and Iwamoto, M. (1990) Simulation Model for the Distribution of Tree Roots-Application to a Slope Stability Model-. Journal of the Japanese Forestry Society, Vol. 72, No. 5, pp. 375-387.
  14. Avanzi, G. D., Giannecchini, R., and Puccinelli, A. (2004) The Influence of the Geological and Geomorphological Settings on Shallow Landslides. An Example in a Temperate Climate Environment: the June 19, 1996 Event in Northwestern Tuscany(Italy). Engineering Geology, Vol. 73, pp.215-228. https://doi.org/10.1016/j.enggeo.2004.01.005
  15. Borga, M., Fontana, G. D., Gregoretti, C., and Marchi, L. (2002) Assessment of Shallow Landsliding by using a Physically Based Model of Hillslope Stability. Hydrological Processes, Vol. 16, pp.2833-2851. https://doi.org/10.1002/hyp.1074
  16. Calcaterra, D. and Santo, A. (2004) The January 10, 1997 Pozzano Landslides, Sorrento Peninsula, Italy. Engineering Geology, Vol. 75, pp.181-200. https://doi.org/10.1016/j.enggeo.2004.05.009
  17. Cheng, J. D., Huang, Y. C., Wu, H. L., Yeh, J. L., and Chang, C. H. (2005) Hydrometeorological and Landuse Attributes of Debris Flow and Debris Floods during Typhoon Toraji, July 29-30, 2001 in Central Taiwan. Journal of Hydrology, Vol. 306, pp. 161-173. https://doi.org/10.1016/j.jhydrol.2004.09.007
  18. Chun, J. H., Lim, J. H., and Lee, D. K. (2007) Biomass Estimation of Gwangneung Catchment Area with Landsat ETM+ Image. Journal of Korean Forest Society, Vol. 96, No. 5, pp.591-601.
  19. Clapp, R. B. and Hornberger, G. M. (1978) Empirical Equations for Some Soil Hydraulic Properties. Water Resources Research, Vol 14, No. 4, pp.601-604. https://doi.org/10.1029/WR014i004p00601
  20. Coles, S., Pericchi, L. R., and Sisson, S. (2003) A Fully Probabilistic Approach to Extreme Rainfall Modeling. Journal of Hydrology, Vol.273, pp.35-50. https://doi.org/10.1016/S0022-1694(02)00353-0
  21. DeGraff, J. V. (1985) Using Isopleth Maps of Landslide Deposits as a Tool in Timber Sale Planning. Bulletin of the Association of Engineering Geologists, Vol. 22, No. 4, pp.445-453.
  22. Demetracopoulos, A. C., Korfiatis, G. P., Bourodimos, E. L., and Nawy, E. G. (1986) Unsaturated Flow Through Solid Waste Landfills: Model and Sensitivity Analysis. Water Resources Bulletin, Vol. 22, No. 4, pp.601-609. https://doi.org/10.1111/j.1752-1688.1986.tb01914.x
  23. Guzzetti, F., Cardinali, M., Reichenbach, P., Cipolla, F., Sebastiani, C., Galli, M., and Salvati, P. (2004) Landslides Triggered by the 23 November 2000 Rainfall Event in the Imperia Province, Western Liguria, Italy. Engineering Geology, Vol. 73, pp.229-245.
  24. Hennrich, K. and Crozier, M. J. (2004) A Hillslope Hydrology Approach for Catchment-Scale Slope Stability Analysis. Earth Surface Processes and Landforms, Vol. 29, pp.599-610. https://doi.org/10.1002/esp.1054
  25. Huang, C. C., Tsai, C. C., and Chen, Y. H. (2002) Generalized Method for Three-Dimensional Slope Stability Analysis. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No. 10, pp.836-848. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(836)
  26. Kundzewicz, Z. W., Budhakooncharoen, S., Bronstert, A., Hoff, H., Lettenmaier, D., Menzel, L., and Schulze, R. (2002) Coping with Variability and Change: Floods and Droughts. Nature Resources Forum, Vol.26, pp.263-274. https://doi.org/10.1111/1477-8947.00029
  27. Kundzewicz, Z. W. and Kaczmarek, Z. (2000) Coping with Hydrological Extremes. International Water Resources Association, Vol.25, No.1, pp.66-75.
  28. Meyer, G. A., Pierce, J. L., Wood, S. H., and Jull, A. J. T. (2001) Fire, Storms, and Erosional Events in the Idaho Batholith. Hydrological Processes, Vol. 15, pp.3025-3038. https://doi.org/10.1002/hyp.389
  29. Montgomery, D. R. and Dietrich, W. E. (1994) A Physically Based Model for the Topographic Control on Shallow Landsliding. Water Resources Research, Vol. 30, No. 4, pp.1153-1171. https://doi.org/10.1029/93WR02979
  30. Neuland, H. (1976) A Prediction Model of Landslips. Catena, Vol. 3, pp.215-230. https://doi.org/10.1016/0341-8162(76)90011-4
  31. Smale, M. C., McLeod, M., and Smale, P. N. (1997) Vegetation and Soil Recovery on Shallow Landslide Scars in Tertiary Hill County, East Cape Region, New Zealand. New Zealand Journal of Ecology, Vol. 21, No. 1, pp.31-41.
  32. Wang, H. F. and Anderson, M. P. (1995) Introduction to Groundwater Modeling, Academic Press, California.
  33. Wu, T. H., McKinnell, W. P., and Swanston, D. N. (1979) Strength of Tree Roots and Landslides on Prince of Wales Island, Alaska. Canadian Geotechnical Journal, Vol. 16, No. 1, pp.19-33. https://doi.org/10.1139/t79-003