비글과 시츄견에서 호기말 양압에 따른 전산화 단층촬영상의 폐밀도의 평가

Assessment of Computed Tomographic Lung Density in Beagle and Shihtzu Dogs : Influence of Position and Positive End Expiratory Pressure

  • 김태훈 (충북대학교 수의과대학 수의학과 동물의료센터) ;
  • 장진화 (서울대학교 수의과대학 수의학과) ;
  • 윤석주 (충북대학교 수의과대학 수의학과 동물의료센터) ;
  • 윤정희 (서울대학교 수의과대학 수의학과) ;
  • 장동우 (충북대학교 수의과대학 수의학과 동물의료센터)
  • Kim, Tae-Hun (Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University) ;
  • Chang, Jin-Hwa (Department of Medical Imaging, College of Veterinary Medicine, Seoul National University) ;
  • Yun, Seok-Ju (Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University) ;
  • Yoon, Jung-Hee (Department of Medical Imaging, College of Veterinary Medicine, Seoul National University) ;
  • Chang, Dong-Woo (Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University)
  • 심사 : 2010.04.12
  • 발행 : 2010.06.30

초록

이 연구의 목적은 정상폐의 의존적 부위와 비의존적 부위에서 중력과 호흡이 폐밀도에 어떤 영향을 미치는지 그리고 폐첨부, 중부, 기저부의 부위별 밀도 차이가 어떻게 존재하며 호기말 양압에 따른 폐실질의 변화상을 알아보고 흉부 전산화 단층촬영에서 호기말 양압과 중력에 의해 가장 영향을 적게 받는 최적의 자세와 압력을 결정하고자 한다. 비글 8마리와 시츄 8마리에서 자발 호흡을 억제시킨 상태에서 호기말양압을 0 mmHg, 10 mmHg, 20 mmHg를 가하여 배측 횡와 자세와 복측 횡와 자세, 좌 우측 횡와자세에서 전산화 단층 촬영을 실시하였다. 폐의 첨부와 중부기저부 (각각 대동맥궁, 기관 분기부, 횡격막 직상방) 세부위의 슬라이스를 선택하였다. 스캔한 세 부위에서 대혈관은 포함시키지 않고 흉벽에서 5 mm 떨어진 폐 주변부에서 전부, 후부, 측부 세 곳을 정하여 50 mm2 면적을 갖는 원형의 관심영역을 설정한 후 그 면적의 밀도를 측정하였다. 폐밀도는 품종과 자세, 호기말 양압에 상관없이 호기말 양압이 0 mmHg, 10 mmHg에서 중력방향에 영향을 받은 폐의 의존적인 부분이 비의존적인 부분보다 더 높게 측정이 되었으나 호기말 양압이 20 mmHg일때는 시츄견의 배측 횡와 자세를 제외하고는 폐밀도에 차이가 없었다. 4가지 자세 모두에서 폐의 첨부의 폐밀도가 폐의 기저부 보다 더 높게 측정이 되었으며 압력이 증가함에 따라 동일부위에서 측정한 폐밀도는 감소하는 경향으로 관찰되었다. 같은 압력과 같은 자세에서 폐의 첨부와 중부, 기저부의 슬라이스에서 전부, 후부, 측부를 비교 평가한 결과에서는 비글과 시츄견 모두에서 복측 횡와 자세와 좌 우측으로 횡와한 자세, 20 mmHg에서 폐밀도간에 차이가 없는 것으로 확인되었다. 따라서 흉부 전산화 단층촬영을 위한 최적의 자세와 호기말 양압은 비글과 시츄견 모두에서 복측 횡와 자세와 좌 우측으로 횡와한 자세 와 20 mmHg로 확인되었으며 이러한 결과들을 바탕으로 폐질환이 의심되는 동물에 있어서 전산화 단층 촬영상 판독을 위한 기초 자료를 구축할 수 있었다.

The objective of this study was to measure densities in various areas of the normal canine lung with computed tomography (CT) depending on influences of gravity and the degree of lung inflation and to determine optimal positions and positive end expiratory pressure of canine lung for CT scanning. In each eight normal Beagle and Shihtzu dogs, a respiratory breathhold maneuver without spontaenous breathing at different positive end expiratory pressure (PEEP) of 0 mmHg, 10 mmHg and 20 mmHg was applied with the position of right and left lateral recumbency, sternal recumbency, and dorsal recumbency and spiral-CT scans of the total lung were acquired. Slices were selected at three levels through the apex, middle and basal lung at the aortic arch, carina and just above the diaphragm and lung density was measured in the dorsal, ventral, and lateral portions of the peripheral lung field. Lung density in dependent areas was higher than in nondependent areas (p < 0.05) regardless of species, positions, anatomic locations at the PEEP of 0 mmHg and 10 mmHg. However, no significant difference of lung density was found at PEEP of 20 mmHg in both species except the dorsal recumbency in Shihtzu dogs. This density gradient in the dependent areas is strongly influenced by PEEP (p < 0.05). In the four positions on the CT gantry, the lung density at the dependent and nondependent location of the lung was greater at the aortic arch than at the base (p < 0.05). Lung density decreased on identical location according to increase of PEEP (p < 0.05). There was no significant difference between right and left lung density at sternal and dorsal recumbency and no significant difference of the dorsal, ventral, and lateral portions of lung density at the right and left recumbency under identical pressure. It is implied that during chest CT scan with 20 mmHg of positive end expiratory pressure with right or left lateral recumbency, canine lung density do not influenced by gravity or anatomic location.

키워드

참고문헌

  1. Ahlberg, NE., F. Hoppe, U. Kelter. A computed tomographic study of volume and X-Ray attenuation of the lungs of Beagles in various body positions. Vet Radiol 1985; 26: 43-47. https://doi.org/10.1111/j.1740-8261.1985.tb01115.x
  2. Amis, TC., HA. Jones, JM. Hughes. Regional distribution of pulmonary ventilation and perfusion in the conscious dog. Am J Vet Res 1982; 43: 1972-1977.
  3. Chang, Hung., S. J. Lai-fook, K. B. Domino, C. Schimmel,J. Hildebrandt, H. Thomas Robertson, R. W. Glenny, M. P. Hlastala. Spatial distribution of ventilation and perfusion in anesthetized dogs in lateral postures. J Appl Physiol 2002; 92: 745-762. https://doi.org/10.1152/japplphysiol.00377.2001
  4. Chevrolet, JC., J. Emrich, RR. Martin, LA. Engel. Voluntary changes in ventilation distribution in the lateral posture. Respir Physiol 1979; 38: 313-323. https://doi.org/10.1016/0034-5687(79)90057-4
  5. Downie, J. M., A. J. Nam, B. A. Simon. Pressure-Volume curve does not predict steady-state lung volume in canine lavage lung injury. Am J Respir Crit Care Med 2004; 169: 957-962. https://doi.org/10.1164/rccm.200305-614OC
  6. Galvin, I., G. B. Drummond, M Nirmalan. Distribution of blood flow and ventilation in the lung : gravity is not the only factor. Br J Anaesth 2007; 98: 420-428. https://doi.org/10.1093/bja/aem036
  7. Gattinoni, L., P. Pelosi, G. Vitale, A. Pesenti, L. D'Andrea, D. Mascheroni. Body position changes redistribute lung computed tomographic density in patients with acute respiratory failure. Anesthesiology 1991; 74: 15-23 https://doi.org/10.1097/00000542-199101000-00004
  8. Karmrodt, J., C. Bletz, S. Yuan, M. David, C. P. Heussel and K. Markstaller. Quantification of atelectatic lung volumes in two different pocine model of ARDS. Br J Anaesth 2006; 96: 883-895
  9. Laviolette, M., J. La Forge, S. Tennina, LP. Boulet. Prognostic value of bronchoalveolar lavage lymphocyte count in recently diagnosed pulmonary sarcoidosis. CHEST 1991; 100: 380-384. https://doi.org/10.1378/chest.100.2.380
  10. Long, F. R., R. S. Williams, R. G. Castile. Inspiratory and expiratory CT lung density in infants and young children. Pediatr Radiol 2005; 35: 677-683. https://doi.org/10.1007/s00247-005-1450-6
  11. Matthias, D, J. Karmrodt, C. Bletz, S. David, A. Herweling, H. Kauczor, K. Markstaller. Analysis of atelectasis, ventilated, and hyperinflated lung during mechanical ventilation by dynamic CT. CHEST 2005; 128: 3757-3770. https://doi.org/10.1378/chest.128.5.3757
  12. Mello, M. F. V. De., A. M. R. Ferreira & A. Nascimento JR. Cytologic analysis of bronchoalveolar lavage fluid collected through an endotracheal tube in dogs. Acta Scientiae Veterinariae 2002; 30: 119-125.
  13. Nam, Arthur J., R. G. Brower, H. E. Fessler, B. A. Simon. Biologic Variability in mechanical ventilation rate and tidal volume does not improve oxygenation or lung mechanics in canine oleic acid lung injury. Am J Respir Crit Care Med 2000; 161: 1797-1804.
  14. Pelosi, P., S. Crotti, L. Brazzi, L. Gattinoni. Computed tomography in adult respiratory distress syndrome : What has in taught us?. Eur Respir J 1996; 9: 1055-1062. https://doi.org/10.1183/09031936.96.09051055
  15. Reed, JH. Jr., EH. Wood. Effect of body position on vertical distribution of pulmonary blood flow. J Appl Physiol 1970; 28: 303-311. https://doi.org/10.1152/jappl.1970.28.3.303
  16. Robinson, PJ., L. Kreel. Pulmonary tissue attenuation with computed tomography: comparison of inspiration and expiration scans. J Comput Assist Tomogr 1979; 3: 740-748. https://doi.org/10.1097/00004728-197903060-00006
  17. Rosenblum, L. J., R. A. Mauceri, D. E. Wellenstein, F. D. Thomas, D. A. Bassano, B. N. Raasch, C. C. Chamberlain. Density patterns in the normal lung as determined by computed tomography. Radiology 1980; 137: 409-416. https://doi.org/10.1148/radiology.137.2.7433674
  18. Rossi, A., C. Santos, J. Roca, A. Torres, MA. Felez, R. Rodriguez-Roisin. Effects of PEEP on VA/Q mismatching in ventilated patients with chronic airflow obstruction. Am J Respir Crit Care Med 1994; 149: 1077-1084. https://doi.org/10.1164/ajrccm.149.5.8173744
  19. Simon, B. A. Regional ventilation and lung mechnical using X-Ray CT. Acad Radiol 2005; 12: 1414-1422. https://doi.org/10.1016/j.acra.2005.07.009
  20. Verschakelen, J. A., L. V. Fraeyehoven, G. Laureys, M. Demedts, A. L. Basert. Differences in CT density between dependent and nondependent portions of the lung : Influence of lung volume. Am J Roentgenol 1993; 161: 713-717. https://doi.org/10.2214/ajr.161.4.8372744
  21. Vieira, S. R. R, L. Puybasset, J. Richecoeur, Q. Lu, P. Cluzel, P. B, Gusman, P. Coriat, J. J. Rouby. A lung computed tomographic assessment of positive end-expiratory pressureinduced lung overdistension. Am J Respir Crit Care Med 1998; 158: 1571-1577. https://doi.org/10.1164/ajrccm.158.5.9802101
  22. Walters, D. M., M. Wills-Karp, W. Mitzner. Assessment of cellular profile and lung function with repeated bronchoalveolar lavage in individual mice. Physiol Genomics 2000; 2: 29-36. https://doi.org/10.1152/physiolgenomics.2000.2.1.29
  23. Wollmer, P., U. Albrechtsson, K. Brauer, L. Eriksson. Measurement of pulmonary density by means of X-ray computerized tomography. CHEST 1986; 90: 387-391. https://doi.org/10.1378/chest.90.3.387