DOI QR코드

DOI QR Code

Constrained Multi-Area Dispatch Scheduling Algorithm with Regionally Distributed Optimal Power Flow Using Alternating Direction Method

ADM 기반 분산처리 최적조류계산을 이용한 다지역 제약급전계획 알고리즘

  • 정구형 (한국전기연구원 Smart Grid 연구센터) ;
  • 김발호 (홍익대학교 전자전기제어공학부) ;
  • 이종주 (한국전기연구원 Smart Grid 연구센터) ;
  • 김학만 (인천대학교 전기공학과)
  • Received : 2010.05.07
  • Accepted : 2010.07.07
  • Published : 2010.09.01

Abstract

This paper proposes a constrained multi-area dispatch scheduling algorithm applicable to interconnected power system operations. The dispatch scheduling formulated as an MIP problem can be efficiently computed by GBD algorithm. GBD guarantees adequate computation speed and solution convergence by reducing the dimension of the dispatch scheduling problem. In addition, the regional decomposition technique based on ADM is introduced to obtain efficient inter-temporal OPF solution. It can find the most economic dispatch schedule incorporating power transactions without each regional utility's private information open.

Keywords

References

  1. A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control: 2nd Edition, John Wiley & Sons, 1996.
  2. X. Guan, R. Baldick, and W. H. Edvin Liu, "Integrating power system scheduling and optimal power flow," 12th Power System Computation Conference, Dresden, Aug. 1996.
  3. J. Batut and A. Renaud, "Daily generation scheduling optimization with transmission constraints: A new class of algorithms", IEEE Transactions on Power Systems, vol. 7, no. 3, pp. 982-987, August, 1992. https://doi.org/10.1109/59.207311
  4. C. Beltran and F. J. Heredia, "Unit commitment by augmented Lagrangian relaxation: Testing two decomposition approaches", Journal of Optimization Theory and Applications, vol. 112, no. 2, pp. 295-314, February, 2002. https://doi.org/10.1023/A:1013601906224
  5. J. F. Benders, "Partitioning procedures for solving mixed variables programming problems," Numerische Mathematik, vol. 4, no. 1, pp. 238-252, December, 1962. https://doi.org/10.1007/BF01386316
  6. A. M. Geoffrion, "Generalized Benders decomposition", Journal of Optimization Theory and Application, vol. 10, no. 4, pp. 237-260, October, 1972. https://doi.org/10.1007/BF00934810
  7. S. M. Shahidehpour and Y. Fu, "Benders decomposition: Applying Benders decomposition to power systems", IEEE Power and Energy Magazine, vol. 3, no. 2, pp. 20-21, March/April, 2005.
  8. H. Ma and S. M. Shahidehpour, "Transmission-constrained unit commitment based on Benders decomposition", International Journal of Electrical Power & Energy Systems, vol. 20, no. 4, pp. 287-294, May, 1998. https://doi.org/10.1016/S0142-0615(97)00058-6
  9. N. Alguacil and A. J. Conejo, "Multiperiod optimal power flow using Benders decomposition", IEEE Transactions on Power Systems, vol. 15, no. 1, February, 2000.
  10. Y. Y. Hong and M. T. Weng, "Optimal short-term real power scheduling in a deregulated competitive market", Electric Power Systems Research, vol. 54, no. 3, pp. 181-188, June, 2000. https://doi.org/10.1016/S0378-7796(99)00083-8
  11. E. Kuan, O. Ano, and A. Vargas, "Unit commitment optimization considering the complete network modeling", 2001 IEEE Porto Power Tech Proceedings, vol. 3, 10-13 September, 2001.
  12. H. Yamin, S. Al-Agtash, and S. M. Shahidehpour, "Security-constrained optimal generation scheduling for GENCOs", IEEE Transactions on Power Systems, vol. 19, no. 3, pp. 1365-1372, August, 2004. https://doi.org/10.1109/TPWRS.2004.831301
  13. L. Bo and S. M. Shahidehpour, "Unit commitment with flexible generating units", IEEE Transactions on Power Systems, vol 20, no. 2, pp. 1079-1088, May, 2005. https://doi.org/10.1109/TPWRS.2005.846063
  14. Y. Fu, S. M. Shahidehpour, and Z. Li, "Security-constrained unit commitment with AC constraints", IEEE Transactions on Power Systems, vol. 20, no. 3, pp. 1538-1550, August, 2005. https://doi.org/10.1109/TPWRS.2005.854375
  15. J. Martinez-Crespo, J. Usaola, and J. L. Fernandez, "Security-constrained optimal generation scheduling in large-scale power systems", IEEE Transactions on Power Systems, vol. 21, no. 1, pp. 321-332, February, 2006. https://doi.org/10.1109/TPWRS.2005.860942
  16. B. H. Kim and R. Baldick, "Coarse-grained distributed optimal power flow", IEEE Transactions on Power Systems, vol. 12, no. 2, pp. 932-939, May, 1997. https://doi.org/10.1109/59.589777
  17. R. Baldick, B. H. Kim, C. Chase, and Y. Luo, "A fast distributed implementation of optimal power flow", IEEE Transactions on Power Systems, vol. 14, no. 3, pp. 858-864, August, 1999. https://doi.org/10.1109/59.780896
  18. B. H. Kim and R. Baldick, "A comparison of distributed optimal power flow algorithms", IEEE Transactions on Power Systems, vol. 15, no. 2, pp. 599-604, May, 2000. https://doi.org/10.1109/59.867147
  19. J. Eckstein, "Parallel alternating direction multiplier decomposition of convex programs," Journal of Optimization Theory and Applications, vol. 80, no. 1, pp. 39-63, January 1994. https://doi.org/10.1007/BF02196592
  20. D. Garby and B. Mercier, "A dual algorithm for the solution of nonlinear variational problems via finite-element approximation," Comp. Math. Appl., vol. 2, pp. 17-40, 1976. https://doi.org/10.1016/0898-1221(76)90003-1
  21. K. H. Chung, B. H. Kim, and K. B. Song, "Implementing distributed optimal power flow using the alternating direction method," KIEE International Transactions on Power Engineering, 5A(4), pp. 412-415, Dec. 2005.
  22. 정구형, 강동주, 김발호, "분산처리 최적조류계산 기반 연계계통 급전계획 알고리즘 개발", 대한전기학회 논문지, 56A권 10호, 2007.
  23. K. Bhattacharya, Math H. J. Bollen, and J. E. Daalder, Operation of Restructured Power Systems, Kluwer Academic Publishers, 2001.
  24. A. Brooke, D. Kendrick and A. Meeraus, GAMS User's Guide, The Scientific Press, 1990.