DOI QR코드

DOI QR Code

GSK3β Inhibitor Peptide Protects Mice from LPS-induced Endotoxin Shock

  • Ko, Ryeojin (Division of Life and Pharmaceutical Sciences, Center for Cell Signaling & Drug Discovery Research, Ewha Womans University) ;
  • Jang, Hyun Duk (Division of Life and Pharmaceutical Sciences, Center for Cell Signaling & Drug Discovery Research, Ewha Womans University) ;
  • Lee, Soo Young (Division of Life and Pharmaceutical Sciences, Center for Cell Signaling & Drug Discovery Research, Ewha Womans University)
  • 투고 : 2010.05.04
  • 심사 : 2010.05.20
  • 발행 : 2010.06.30

초록

Background: Glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) is a ubiquitous serine/threonine kinase that is regulated by serine phosphorylation at 9. Recent studies have reported the beneficial effects of a number of the pharmacological $GSK3{\beta}$ inhibitors in rodent models of septic shock. Since most of the $GSK3{\beta}$ inhibitors are targeted at the ATP-binding site, which is highly conserved among diverse protein kinases, the development of novel non-ATP competitive $GSK3{\beta}$ inhibitors is needed. Methods: Based on the unique phosphorylation motif of $GSK3{\beta}$, we designed and generated a novel class of $GSK3{\beta}$ inhibitor (GSK3i) peptides. In addition, we investigated the effects of a GSK3i peptide on lipopolysaccharide (LPS)-stimulated cytokine production and septic shock. Mice were intraperitoneally injected with GSK3i peptide and monitored over a 7-day period for survival. Results: We first demonstrate its effects on LPS-stimulated pro-inflammatory cytokine production including interleukin (IL)-6 and IL-12p40. LPS-induced IL-6 and IL-12p40 production in macrophages was suppressed when macrophages were treated with the GSKi peptide. Administration of the GSK3i peptide potently suppressed LPS-mediated endotoxin shock. Conclusion: Collectively, we present a rational strategy for the development of a therapeutic GSK3i peptide. This peptide may serve as a novel template for the design of non-ATP competitive GSK3 inhibitors.

키워드

참고문헌

  1. Cohen P, Frame S: The renaissance of GSK3. Nat Rev Mol Cell Biol 2;769-776, 2001
  2. Frame S, Cohen P: GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359;1-16, 2001 https://doi.org/10.1042/0264-6021:3590001
  3. Woodgett JR: Judging a protein by more than its name: GSK-3. Sci STKE 2001;re12, 2001
  4. Embi N, Rylatt DB, Cohen P: Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMPdependent protein kinase and phosphorylase kinase. Eur J Biochem 107;519-527, 1980
  5. Beals CR, Sheridan CM, Turck CW, Gardner P, Crabtree GR: Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275;1930-1934, 1997 https://doi.org/10.1126/science.275.5308.1930
  6. El Jamali A, Freund C, Rechner C, Scheidereit C, Dietz R, Bergmann MW: Reoxygenation after severe hypoxia induces cardiomyocyte hypertrophy in vitro: activation of CREB downstream of GSK3 beta. FASEB J 18;1096-1098, 2004
  7. Wei W, Jin J, Schlisio S, Harper JW, Kaelin WG Jr: The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8;25-33, 2005 https://doi.org/10.1016/j.ccr.2005.06.005
  8. Gregory MA, Qi Y, Hann SR: Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem 278;51606-51612, 2003 https://doi.org/10.1074/jbc.M310722200
  9. Liang J, Slingerland JM: Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2; 339-345, 2003
  10. Gum RJ, Gaede LL, Koterski SL, Heindel M, Clampit JE, Zinker BA, Trevillyan JM, Ulich RG, Jirousek MR, Rondinone CM: Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice. Diabetes 52;21-28, 2003 https://doi.org/10.2337/diabetes.52.1.21
  11. Ring DB, Johnson KW, Henriksen EJ, Nuss JM, Goff D, Kinnick TR, Ma ST, Reeder JW, Samuels I, Slabiak T, Wagman AS, Hammond ME, Harrison SD: Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes 52;588-595, 2003 https://doi.org/10.2337/diabetes.52.3.588
  12. Martinez A, Perez DI: GSK-3 inhibitors: a ray of hope for the treatment of Alzheimer's disease? J Alzheimers Dis 15;181-191, 2008 https://doi.org/10.3233/JAD-2008-15204
  13. Beaulieu JM, Gainetdinov RR, Caron MG: Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 49;327-347, 2009 https://doi.org/10.1146/annurev.pharmtox.011008.145634
  14. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K, Wang CY, He X, MacDougald OA, You M, Williams BO, Guan KL: TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126;955-968, 2006 https://doi.org/10.1016/j.cell.2006.06.055
  15. Martin M, Rehani K, Jope RS, Michalek SM: Toll-like receptor- mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6;777- 784, 2005
  16. Hu X, Paik PK, Chen J, Yarilina A, Kockeritz L, Lu TT, Woodgett JR, Ivashkiv LB: IFN-gamma suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity 24;563-574, 2006 https://doi.org/10.1016/j.immuni.2006.02.014
  17. Rehani K, Wang H, Garcia CA, Kinane DF, Martin M: Toll-like receptor-mediated production of IL-1Ra is negatively regulated by GSK3 via the MAPK ERK1/2. J Immunol 182;547-553, 2009 https://doi.org/10.4049/jimmunol.182.1.547
  18. Beurel E, Jope RS: Glycogen synthase kinase-3 promotes the synergistic action of interferon-gamma on lipopolysaccharide- induced IL-6 production in RAW264.7 cells. Cell Signal 21;978-985, 2009 https://doi.org/10.1016/j.cellsig.2009.02.019
  19. Cohen P, Goedert M: GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov 3;479-487, 2004 https://doi.org/10.1038/nrd1415
  20. Wada A: GSK-3 inhibitors and insulin receptor signaling in health, disease, and therapeutics. Front Biosci 14;1558- 1570, 2009
  21. Phukan S, Babu VS, Kannoji A, Hariharan R, Balaji VN: GSK3beta: role in therapeutic landscape and development of modulators. Br J Phamacol 160;1-19, 2010 https://doi.org/10.1111/j.1476-5381.2010.00661.x
  22. Plotkin B, Kaidanovich O, Talior I, Eldar-Finkelman H: Insulin mimetic action of synthetic phosphorylated peptide inhibitors of glycogen synthase kinase-3. J Pharmacol Exp Ther 305;974-980, 2003 https://doi.org/10.1124/jpet.102.047381
  23. Fischer PM: CDK versus GSK-3 inhibition: a purple haze no longer? Chem Biol 10;1144-1146, 2003 https://doi.org/10.1016/j.chembiol.2003.12.009
  24. Phiel CJ, Klein PS: Molecular targets of lithium action. Annu Rev Pharmacol Toxicol 41;789-813, 2001 https://doi.org/10.1146/annurev.pharmtox.41.1.789
  25. Sawa M: Strategies for the design of selective protein kinase inhibitors. Mini Rev Med Chem 8;1291-1297, 2008 https://doi.org/10.2174/138955708786141043
  26. Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, Pearl LH: Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 105;721-732, 2001 https://doi.org/10.1016/S0092-8674(01)00374-9
  27. Frame S, Cohen P, Biondi RM: A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell 7;1321- 1327, 2001 https://doi.org/10.1016/S1097-2765(01)00253-2
  28. ter Haar E, Coll JT, Austen DA, Hsiao HM, Swenson L, Jain J: Structure of GSK3beta reveals a primed phosphorylation mechanism. Nat Struct Biol 8;593-596, 2001 https://doi.org/10.1038/89624
  29. Choi JM, Ahn MH, Chae WJ, Jung YG, Park JC, Song HM, Kim YE, Shin JA, Park CS, Park JW, Park TK, Lee JH, Seo BF, Kim KD, Kim ES, Lee DH, Lee SK, Lee SK: Intranasal delivery of the cytoplasmic domain of CTLA-4 using a novel protein transduction domain prevents allergic inflammation. Nat Med 12;574-579, 2006 https://doi.org/10.1038/nm1385
  30. Kim H, Choi HK, Shin JH, Kim KH, Huh JY, Lee SA, Ko CY, Kim HS, Shin HI, Lee HJ, Jeong D, Kim N, Choi Y, Lee SY: Selective inhibition of RANK blocks osteoclast maturation and function and prevents bone loss in mice. J Clin Invest 119;813-825, 2009 https://doi.org/10.1172/JCI36809
  31. Beurel E, Michalek SM, Jope RS: Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol 31;24-31, 2010 https://doi.org/10.1016/j.it.2009.09.007
  32. Jope RS, Yuskaitis CJ, Beurel E: Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 32;577-595, 2007 https://doi.org/10.1007/s11064-006-9128-5
  33. Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A: Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol 156;885-898, 2009 https://doi.org/10.1111/j.1476-5381.2008.00085.x
  34. Bax B, Carter PS, Lewis C, Guy AR, Bridges A, Tanner R, Pettman G, Mannix C, Culbert AA, Brown MJ, Smith DG, Reith AD: The structure of phosphorylated GSK-3beta complexed with a peptide, FRATtide, that inhibits beta-catenin phosphorylation. Structure 9;1143-1152, 2001 https://doi.org/10.1016/S0969-2126(01)00679-7
  35. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ: Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3;1009-1013, 2001 https://doi.org/10.1038/ncb1101-1009
  36. Mottet D, Dumont V, Deccache Y, Demazy C, Ninane N, Raes M, Michiels C: Regulation of hypoxia-inducible factor- 1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. J Biol Chem 278;31277- 31285, 2003 https://doi.org/10.1074/jbc.M300763200
  37. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378;785-789, 1995 https://doi.org/10.1038/378785a0
  38. Doble BW, Woodgett JR: GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116;1175-1186, 2003 https://doi.org/10.1242/jcs.00384
  39. Plotkin B, Kaidanovich O, Talior I, Eldar-Finkelman H: Insulin mimetic action of synthetic phosphorylated peptide inhibitors of glycogen synthase kinase-3. J Pharmacol Exp Ther 305;974-980, 2003 https://doi.org/10.1124/jpet.102.047381
  40. Sato AK, Viswanathan M, Kent RB, Wood CR: Therapeutic peptides: technological advances driving peptides into development. Curr Opin Biotechnol 17;638-642, 2006 https://doi.org/10.1016/j.copbio.2006.10.002

피인용 문헌

  1. Glycogen Synthase Kinase-3α Limits Ischemic Injury, Cardiac Rupture, Post-Myocardial Infarction Remodeling and Death vol.125, pp.1, 2012, https://doi.org/10.1161/circulationaha.111.050666