DOI QR코드

DOI QR Code

The Impact of Nanomaterials in Immune System

  • Jang, Jiyoung (Department of Microbiology, College of Medicine and Nanomedical National Core Research Center, Yonsei University) ;
  • Lim, Dae-Hyoun (Department of Microbiology, College of Medicine and Nanomedical National Core Research Center, Yonsei University) ;
  • Choi, In-Hong (Department of Microbiology, College of Medicine and Nanomedical National Core Research Center, Yonsei University)
  • Received : 2010.04.09
  • Accepted : 2010.04.23
  • Published : 2010.06.30

Abstract

As a nanotechnology has been actively applied to the overall areas of scientific fields, it is necessary to understand the characteristic features, physical behaviors and the potential effects of exposure to nanomaterials and their toxicity. In this article we review the immunological influences induced by several nanomaterials and emphasize establishment of the animal models to estimate the impact of these nanomaterials on development of immunological diseases.

Keywords

References

  1. Dreher KL: Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77;3-5, 2004
  2. Borm PJ, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S: Research strategies for safety evaluation of nanomaterials, Part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90;23-32, 2006
  3. Rushton EK, Jiang J, Leonard SS, Eberly S, Castranova V, Biswas P, Elder A, Han X, Gelein R, Finkelstein J, Oberdörster G: Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A 73; 445-461, 2010 https://doi.org/10.1080/15287390903489422
  4. Riviere G: European and international standardisation progress in the field of engineered nanoparticles. Inhal Toxicol 21(Suppl 1);2-7, 2009 https://doi.org/10.1080/08958370902942590
  5. Lockman PR, Koziara JM, Mumper RJ, Allen DD: Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Targeting 12;635-641, 2004 https://doi.org/10.1080/10611860400015936
  6. Bergamaschi E, Bussolati O, Magrini A, Bottini M, Migliore L, Bellucci S, Iavicoli I, Bergamaschi A: Nanomaterials and lung toxicity: interactions with airways cells and relevance for occupational health risk assessment. Int J Immunopathol Pharmacol 19(4 Suppl);3-10, 2006
  7. Jou MJ: Pathophysiological and pharmacological implications of mitochondria-targeted reactive oxygen species generation in astrocytes. Adv Drug Deliv Rev 60;1512-1526, 2008 https://doi.org/10.1016/j.addr.2008.06.004
  8. Xia T, Li N, Nel AE: Potential health impact of nanoparticles. Annu Rev Public Health 30;137-150, 2009 https://doi.org/10.1146/annurev.publhealth.031308.100155
  9. Moller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S: Role of oxidative damage in toxicity of particulates. Free Radic Res 44;1-46, 2010 https://doi.org/10.3109/10715760903300691
  10. Girod CE, King TE Jr: COPD: a dust-induced disease? Chest 128;3055-3064, 2005 https://doi.org/10.1378/chest.128.4.3055
  11. Biswas P, Wu CY: Nanoparticles and the environment. J Ai Waste Manage Assoc 55;708-746, 2005 https://doi.org/10.1080/10473289.2005.10464656
  12. Duffin R, Mills NL, Donaldson K: Nanoparticles-a thoracic toxicology perspective. Yonsei Med J 48;561-572, 2007 https://doi.org/10.3349/ymj.2007.48.4.561
  13. Alley D, Langley-Turnbaugh S, Gordon N, Wise J, Van Epps G, Jalbert A: The effect of PM10 on human lung fibroblasts. Toxicol Ind Health 25;111-120, 2009 https://doi.org/10.1177/0748233709103185
  14. Clark NA, Demers PA, Karr CJ, Koehoorn M, Lencar C, Tamburic L, Brauer M: Effect of early life exposure to air pollution on development of childhood asthma. Environ Health Perspect 118;284-290, 2010
  15. Nogueira JB: Air pollution and cardiovascular disease. Rev Port Cardiol 28;715-733, 2009
  16. Heintz NH, Janssen-Heininger YM, Mossman BT: Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol 42;133-139, 2010 https://doi.org/10.1165/rcmb.2009-0206TR
  17. Rinaudo C, Croce A, Musa M, Fornero E, Allegrina M, Trivero P, Bellis D, Sferch D, Toffalorio F, Veronesi G, Pelosi G: Study of inorganic particles, fibers, and asbestos bodies by variable pressure scanning electron microscopy with annexed energy dispersive spectroscopy and micro- Raman spectroscopy in thin sections of lung and pleural plaque. Appl Spectrosc 64;571-577, 2010 https://doi.org/10.1366/000370210791414380
  18. Eom HJ, Choi J: Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B. Toxicol In Vitro 23;1326-1332, 2009 https://doi.org/10.1016/j.tiv.2009.07.010
  19. Eom HJ, Choi J: Oxidative stress of $CeO_{2}$ nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett 187;77-83, 2009 https://doi.org/10.1016/j.toxlet.2009.01.028
  20. Inoue K, Takano H, Yanagisawa R, Sakurai M, Ichinose T, Sadakane K, Yoshikawa T: Effects of nano particles on antigen- related airway inflammation in mice. Respir Res 6;106, 2005 https://doi.org/10.1186/1465-9921-6-106
  21. Alberg T, Cassee FR, Groeng EC, Dybing E, Lovik M: Fine ambient particles from various sites in europe exerted a greater IgE adjuvant effect than coarse ambient particles in a mouse model. J Toxicol Environ Health A 72;1-13, 2009
  22. Park EJ, Yoon J, Choi K, Yi J, Park K: Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology 260;37-46, 2009 https://doi.org/10.1016/j.tox.2009.03.005
  23. Liu Y, Jiao F, Qiu Y, Li W, Lao F, Zhou G, Sun B, Xing G, Dong J, Zhao Y, Chai Z, Chen C: The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-alpha mediated cellular immunity. Biomaterials 30;3934-3945, 2009 https://doi.org/10.1016/j.biomaterials.2009.04.001
  24. Arantes-Costa FM, Lopes FD, Toledo AC, Magliarelli-Filho PA, Moriya HT, Carvalho-Oliveira R, Mauad T, Saldiva PH, Martins MA: Effects of residual oil fly ash (ROFA) in mice with chronic allergic pulmonary inflammation. Toxicol Pathol 36;680-686, 2008 https://doi.org/10.1177/0192623308317427
  25. Niwa Y, Hiura Y, Sawamura H, Iwai N: Inhalation exposure to carbon black induces inflammatory response in rats. Circ J 72;144-149, 2008 https://doi.org/10.1253/circj.72.144
  26. Koike E, Takano H, Inoue KI, Yanagisawa R, Sakurai M, Aoyagi H, Shinohara R, Kobayashi T: Pulmonary exposure to carbon black nanoparticles increases the number of antigen- presenting cells in murine lung. Int J Immunopathol Pharmacol 21;35-42, 2008 https://doi.org/10.1177/039463200802100105
  27. Schipper ML, Nakayama-Ratchford N, Davis CR, Kam NW, Chu P, Liu Z, Sun X, Dai H, Gambhir SS: A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 3;216-221, 2008 https://doi.org/10.1038/nnano.2008.68
  28. Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, Vlasova II, Belikova NA, Yanamala N, Kapralov A, Tyurina YY, Shi J, Kisin ER, Murray AR, Franks J, Stolz D, Gou P, Klein-Seetharaman J, Fadeel B, Star A, Shvedova AA: Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5;354-359, 2010 https://doi.org/10.1038/nnano.2010.44
  29. Chou CC, Hsiao HY, Hong QS, Chen CH, Peng YW, Chen HW, Yang PC: Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett 8;437-445, 2008 https://doi.org/10.1021/nl0723634
  30. Herzog E, Byrne HJ, Casey A, Davoren M, Lenz AG, Maier KL, Duschl A, Oostingh GJ: SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicol Appl Pharmacol 234;378-390, 2009 https://doi.org/10.1016/j.taap.2008.10.015
  31. Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, Moss OR, Wong BA, Dodd DE, Andersen ME, Bonner JC: Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 4; 747-751, 2009 https://doi.org/10.1038/nnano.2009.305
  32. Ye SF, Wu YH, Hou ZQ, Zhang QQ: ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem Biophys Res Commun 379;643-648, 2009 https://doi.org/10.1016/j.bbrc.2008.12.137
  33. Fujita K, Morimoto Y, Ogami A, Myojyo T, Tanaka I, Shimada M, Wang WN, Endoh S, Uchida K, Nakazato T, Yamamoto K, Fukui H, Horie M, Yoshida Y, Iwahashi H, Nakanishi J: Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles. Toxicology 258;47-55, 2009 https://doi.org/10.1016/j.tox.2009.01.005
  34. Muller L, Riediker M, Wick P, Mohr M, Gehr P, Rothen-Rutishauser B: Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J R Soc Interface 7(Suppl 1);S27-40, 2010 https://doi.org/10.1098/rsif.2009.0161.focus
  35. Nemmar A, Melghit K, Ali BH: The acute proinflammatory and prothrombotic effects of pulmonary exposure to rutile TiO2 nanorods in rats. Exp Biol Med (Maywood) 233; 610-619, 2008 https://doi.org/10.3181/0706-RM-165
  36. Geiser M, Casaulta M, Kupferschmid B, Schulz H, Semmler-Behnke M, Kreyling W: The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol 38;371-376, 2008 https://doi.org/10.1165/rcmb.2007-0138OC
  37. Yanagisawa R, Takano H, Inoue K, Koike E, Kamachi T, Sadakane K, Ichinose T: Titanium dioxide nanoparticles aggravate atopic dermatitis-like skin lesions in NC/Nga mice. Exp Biol Med (Maywood) 234;314-322, 2009 https://doi.org/10.3181/0810-RM-304
  38. Morishige T, Yoshioka Y, Tanabe A, Yao X, Tsunoda S, Tsutsumi Y, Mukai Y, Okada N, Nakagawa S: Titanium dioxide induces different levels of IL-1beta production dependent on its particle characteristics through caspase-1 activation mediated by reactive oxygen species and cathepsin B. Biochem Biophys Res Commun 392;160-165, 2010 https://doi.org/10.1016/j.bbrc.2009.12.178
  39. Cho WS, Kim S, Han BS, Son WC, Jeong J: Comparison of gene expression profiles in mice liver following intravenous injection of 4 and 100 nm-sized PEG-coated gold nanoparticles. Toxicol Lett 191;96-102, 2009 https://doi.org/10.1016/j.toxlet.2009.08.010
  40. Hutter E, Boridy S, Labrecque S, Lalancette-Hebert M, Kriz J, Winnik FM, Maysinger D: Microglial response to gold nanoparticles. ACS Nano 4;2595-2606, 2010 https://doi.org/10.1021/nn901869f
  41. Brandenberger C, Rothen-Rutishauser B, Mühlfeld C, Schmid O, Ferron GA, Maier KL, Gehr P, Lenz AG: Effects and uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model. Toxicol Appl Pharmacol 242;56-65, 2010 https://doi.org/10.1016/j.taap.2009.09.014
  42. Park EJ, Kim H, Kim Y, Yi J, Choi K, Park K: Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology 2010 PMID: 20540983
  43. Zhong CY, Zhou YM, Smith KR, Kennedy IM, Chen CY, Aust AE, Pinkerton KE: Oxidative injury in the lungs of neonatal rats following short-term exposure to ultrafine iron and soot particles. J Toxicol Environ Health A 73;837-847, 2010 https://doi.org/10.1080/15287391003689366
  44. Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE: Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2;2121-2134, 2008 https://doi.org/10.1021/nn800511k
  45. Park YH, Kim JN, Jeong SH, Choi JE, Lee SH, Choi BH, Lee JP, Sohn KH, Park KL, Kim MK, Son SW: Assessment of dermal toxicity of nanosilica using cultured keratinocytes, a human skin equivalent model and an in vivo model. Toxicology 267;178-181, 2010 https://doi.org/10.1016/j.tox.2009.10.011
  46. Li X, Hu Y, Jin Z, Jiang H, Wen J: Silica-induced TNF-alpha and TGF-beta1 expression in RAW264.7 cells are dependent on Src-ERK/AP-1 pathways. Toxicol Mech Methods 19;51-58, 2009 https://doi.org/10.1080/15376510802354201
  47. Nishimori H, Kondoh M, Isoda K, Tsunoda S, Tsutsumi Y, Yagi K: Silica nanoparticles as hepatotoxicants. Eur J Pharm Biopharm 72;496-501, 2009 https://doi.org/10.1016/j.ejpb.2009.02.005
  48. Xia T, Kovochich M, Liong M, Zink JI, Nel AE: Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2;85-96, 2008 https://doi.org/10.1021/nn700256c
  49. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF: Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38; 1404-1413, 2008 https://doi.org/10.1002/eji.200737984
  50. Inoue K, Takano H, Yanagisawa R, Koike E, Shimada A: Size effects of latex nanomaterials on lung inflammation in mice. Toxicol Appl Pharmacol 234;68-76, 2009 https://doi.org/10.1016/j.taap.2008.09.012

Cited by

  1. Polymer Nanoneedle‐Mediated Intracellular Drug Delivery vol.7, pp.14, 2010, https://doi.org/10.1002/smll.201100497
  2. Size dependent macrophage responses and toxicological effects of Ag nanoparticles vol.47, pp.15, 2010, https://doi.org/10.1039/c1cc10357a
  3. Functionalization Density Dependent Toxicity of Oxidized Multiwalled Carbon Nanotubes in a Murine Macrophage Cell Line vol.25, pp.10, 2012, https://doi.org/10.1021/tx300228d
  4. Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems vol.8, pp.1, 2010, https://doi.org/10.1517/17425255.2012.637916
  5. Applications of Nanotechnology in Dermatology vol.132, pp.3, 2010, https://doi.org/10.1038/jid.2011.425
  6. Understanding engineered nanomaterial skin interactions and the modulatory effects of ultraviolet radiation skin exposure vol.6, pp.1, 2010, https://doi.org/10.1002/wnan.1244
  7. A historical perspective of immunotoxicology vol.11, pp.3, 2010, https://doi.org/10.3109/1547691x.2013.837121
  8. The importance of nanoparticle shape in cancer drug delivery vol.12, pp.1, 2010, https://doi.org/10.1517/17425247.2014.950564
  9. Development of a Ta/TaN/TaNx(Ag)y/TaN nanocomposite coating system and bio-response study for biomedical applications vol.145, pp.None, 2010, https://doi.org/10.1016/j.vacuum.2017.08.020
  10. The use of Drosophila melanogaster as a model organism to study immune-nanotoxicity vol.13, pp.4, 2019, https://doi.org/10.1080/17435390.2018.1546413
  11. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism vol.20, pp.5, 2010, https://doi.org/10.3390/ijms20051003
  12. Immunostimulatory Potential of MoS 2 Nanosheets: Enhancing Dendritic Cell Maturation, Migration and T Cell Elicitation vol.15, pp.None, 2010, https://doi.org/10.2147/ijn.s243537