DOI QR코드

DOI QR Code

Buffer Intensity of Ammonia and MPA in Water-Steam Cycle of PWRs

가압경수로 원전 물-증기 순환영역에서 암모니아와 MPA의 완충세기

  • Rhee, In-H. (Department of Environmental Engineering, Soonchunhyang University) ;
  • Ahn, Hyun-Kyoung (Department of Environmental Engineering, Soonchunhyang University)
  • 이인형 (순천향대학교 에너지환경공학과) ;
  • 안현경 (순천향대학교 에너지환경공학과)
  • Received : 2010.06.24
  • Accepted : 2010.07.06
  • Published : 2010.07.31

Abstract

Amines, ammonia or 3-methoxypropylamine (MPA), are used to maintain the optimized pH for the prevention of corrosion in the secondary side of Pressurized Water Reactors (PWRs). They are differently dissociated as a function of temperature which is not same in each location of the water-steam cycle. pH at the operation temperature depends on temperature of fluid and equilibrium constants of water and amines. Thus, every amine provides the different pH in the entire secondary side so that pH is not only the sufficient parameter in corrosion control. The secondary parameter, i.e., buffer intensity, is the ability to maintain a stable pH when $H^+$ are added or removed due to the ingress of impurities or the reaction of corrosion. The buffer intensity is necessary to provide the selection criteria for the best pH control agent for secondary side and the basic understanding of the reason why the flow-accelerated corrosion(FAC) rate may demonstrate the bell-shape curve over temperature. The buffer intensities of ammonia and MPA were reviewed over the entire operation temperature of PWRs. The sufficient buffer intensity is provided for the inhibition of corrosion by ammonia in low temperature $(25{\sim}100^{\circ}C)$ and by DMA in high temperature $(150{\sim}250^{\circ}C)$. In terms of buffer intensity, i) the best pH control agent is an amine with $pK_a(T)$ range of pH(T)- $1{\leq}pK_a(T){\leq}pH(T)$ + 0.5 and ii) the amine solution should have sufficient buffer intensity, ${\beta}$ to inhibit corrosion, and iii) FAC rate may be maximum at the temperature, where ${\beta}_B/{\beta}$ ratio is lowest.

아민(암모니아 또는 MPA)은 가압경수로 원전 2차측 부식을 방지하는 최적 pH를 유지하기 위해 사용되고, 온도가 동일하게 유지되지 않는 물-증기 순환 영역에서 모든 아민은 평형상수에 따라 2차측에서 서로 다른 pH를 나타낸다. 부식제어에서 pH는 유일한 인자가 아니므로 두 번째 변수, 즉 불순물의 유입 또는 부식 반응으로 인해 $H^+$가 추가되거나 제거되었을 때 안정된 pH를 지속하는 능력인 완충세기의 고려가 필요하다. 온도를 고려한 완충세기는 2차측 최적 pH 제어제 선정과 유체가속부식의 특징을 기본적으로 이해할 수 있도록 한다. PWRs의 전체 운전범위에서 암모니아와 MPA의 완충세기를 조사하였다. 낮은 온도$(25{\sim}100^{\circ}C)$에서는 암모니아 그리고 높은 온도$(150{\sim}250^{\circ}C)$에서는 MPA가 부식 억제를 위한 충분한 완충세기를 나타내었다. 완충세기 측면에서, i) 최적 pH 제어제 pH 범위는 pH(T)- $1{\leq}pK_a(T){\leq}pH(T)$+0.5, ii) 아민 용액은 부식 억제를 위해 충분한 완충세기$({\beta})$를 가져야하고, iii) 최대 유체가속부식은 ${\beta}_B/{\beta}$ 비율이 최저인 온도에서 최대를 나타낸다.

Keywords

References

  1. P. Millet and K. Fruzzetti, "EPRI Internal Report on Status of Allication of Amines in US PWRs", EPRI, Palo Alto, CA, 2006.
  2. G.J. Bignold, et. al., "Water Chemistry in Nuclear System 2", p. 5, BNES, London, 1981.
  3. "Flow-Accelerated Corrosion in Power Plants", EPRI TR-106611-R1, 1998
  4. W.M.M. Huijbregts, "Materials Performance", 23 (10), p. 39, 1984.
  5. L. Tomlinson, et. al., "Corrosion", 22 (1), p. 45, 1987. https://doi.org/10.1179/000705987798271839
  6. "Computer-Calculated Potential pH Diagrams to ${300^{\circ}C}$", EPRI NP3137, V-2, June 1983
  7. Paine et.al., "3rd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors", p. 501-509, 1987, The Metallurgical Society (Warrendale, PA)
  8. Jevee, et. al., "12th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors", p. 1305-1315, 2005, TMS.
  9. Pavageau, et. al., "13th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors", 2007.
  10. P. King et. al., "11th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors", 2003.