DOI QR코드

DOI QR Code

Non-linear Analysis of Laminated Composite Plates with Multi-directional Stiffness Degradation

강성 저하된 적층복합판의 비선형 해석

  • Han, Sung-Cheon (Department of Civil & Railroad Engineering, Daewon University College) ;
  • Park, Weon-Tae (Division of Construction and Environmental Engineering, Kongju National University) ;
  • Lee, Won-Hong (Department of Civil Engineering, Jinju National University)
  • 한성천 (대원대학 철도건설과) ;
  • 박원태 (공주대학교 건설환경공학부) ;
  • 이원홍 (진주산업대학교 토목공학과)
  • Received : 2010.04.20
  • Accepted : 2010.07.06
  • Published : 2010.07.31

Abstract

In this study, a finite element formulation based first-order shear deformation theory is developed for non-linear behaviors of laminated composite plates containing matrix cracking. The multi-directional stiffness degradation is developed for adopting the stiffness variation induced from matrix cracking, which is proposed by Duan and Yao. The matrix cracking can be expressed in terms of the variation of material properties, such as Young's modulus, shear modulus and Possion ratio of plates, and sequently it is possible to predict the variation of the local stiffness. Using the assumed natural strain method, the present shell element generates neither membrane nor shear locking behavior. Numerical examples demonstrate that the present element behaves quite satisfactorily either for the linear or geometrical nonlinear analysis of laminated composite plates. The results of laminated composite plates with matrix cracking may be the benchmark test for the non-linear analysis of damaged laminated composite plates.

본 연구에서는 매트릭스가 손상된 적층복합판의 비선형 거동을 분석하기 위한 일차전단변형이론에 기초한 유한요소 정식을 유도하였다. Duan and Yao가 제안한 Matrix 균열의 강성 치환 방법을 적용하여 다방향 강성저하식을 구성하였다. 발생된 Matrix 균열은 탄성계수, 전단탄성계수 및 프아송비의 변화로 표현할 수 있으며, 이를 이용하여 판의 국부 강성 변화를 예측할 수 있다. 가정된 자연변형률 방법을 적용한 쉘요소를 이용하여 면내 및 전단잠김 현상이 발생하지 않았다. 적층복합판의 선형해석은 물론 비선형 해석결과들은 참고문헌의 결과들에 수렴되었다. 매트릭스가 손상된 적층복합판의 해석 결과들은 향후 연구에 비교자료로 활용될 수 있을 것이다.

Keywords

References

  1. R. Talerja, "Fatigue of composite materials", Technomic Publishing Co., Inc, 1987.
  2. X, Duan and W. X. Yao, "Multi-directional stiffness degradation induced by matrix cracking incomposite laminates", International Journal of Fatigue ,Vol.24, pp.119-125, 2002. https://doi.org/10.1016/S0142-1123(01)00066-4
  3. H. C. Huang and E. Hinton E, "A new nine node degenerated shell element with enhanced membrane and shear interpolation", International Journal for Numerical Methods in Engineering, Vol. 22, pp. 73-92, 1986. https://doi.org/10.1002/nme.1620220107
  4. S. W. Yoo and C. K. Choi, "Geometrically nonlinear analysis of laminated composite by an improved degenerated shell element", Struct. Eng. Mech., Vol.9(1), pp. 99-110, 2000. https://doi.org/10.12989/sem.2000.9.1.099
  5. H. Ma and W. Kanok-Nukulchai, "On the application of assumed strained methods", In: Kanok-Nukulchai et al., editors. Structural engineering and construction, achievement, trends and challenges, AIT, Bankok, 1989.
  6. S. C. Han, K. D. Kim and W. Kanok-Nukulchai, "An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells", Structural Engineering and Mechanics, Vol.18(6), pp.807-829, 2004. https://doi.org/10.12989/sem.2004.18.6.807
  7. 한성천, 최삼열, "변형률 보간 9절점 쉘 요소를 이용한 적층복합판 과 쉘의 선형 정적 해석 및 자유진동해석", 한국전산구조공학회논문집, 제17권 제4호, pp. 279-293, 2004.
  8. 한봉구, 김덕현, 김세원, "3차원 복합재료 구조물의 해석", 한국강구조학회 학술발표대회논문집, 2005.
  9. 이원홍, 한성천, 박원태, "점진기능재료(FGM)판의 휨, 진동 및 좌굴해석", 한국산학기술학회논문집, 제9권 제4호, pp. 1043-1049, 2008. https://doi.org/10.5762/KAIS.2008.9.4.1043
  10. S. W. Tsai, "Composite design", 4th edition. Think Composites: Dayton, Ohio, 1988.
  11. O. C. Zienkiewicz and R. L. Taylor, "The Finite Element Method",. McGraw-Hill, London, 1989.
  12. O. C. Zienkiewicz and R. L. Taylor, "The Finite Element Method". Butterworth-Heinemann, London, 2000.
  13. E. M. B. Campello, P. M. Pimenta and P. Wriggers, "A triangular finite shell element based on a fully nonlinear shell formulation", Computational Mechanics Vol. 31, pp. 505-518, 2003. https://doi.org/10.1007/s00466-003-0458-8
  14. J. C. Simo, D. D. Fox and M. S. Rifai, "On a stress resultant geometrically exact shell model", Part III: Computational aspects of the nonlinear theory, Computer Methods in Applied Mechanics and Engineering, Vol. 79, pp. 21-70, 1990. https://doi.org/10.1016/0045-7825(90)90094-3
  15. J. N. Reddy, "A general nonlinear 3rd-order theory of plates with moderate thickness", International Journal of Non-Linear Mechanics, Vol.25(6), pp. 677-686, 1990. https://doi.org/10.1016/0020-7462(90)90006-U
  16. J. N. Reddy, "Mechanics of laminated composite plates and shells", CRC Press: Florida, 2004.
  17. Y. Basar, Y. Ding and R. Schultz, "Refined shear-deformation models for composite laminates with finite rotations", International Journal of Solids and Structures, Vol.30, pp.2611-2638, 1993. https://doi.org/10.1016/0020-7683(93)90102-D
  18. I. Kreja and R. Schmidt, "Large rotations in first-order shear deformation FE analysis of laminated shells", International Journal of Non-linear Mechanics, Vol.41(1), pp.101-123, 2006. https://doi.org/10.1016/j.ijnonlinmec.2005.06.009