DOI QR코드

DOI QR Code

A Green Protocol for Catalytic Conversion of Epoxides to 1,2-Diacetoxy Esters with Phosphomolybdic Acid Alone or Its Supported on Silica Gel

  • Received : 2010.06.28
  • Accepted : 2010.08.04
  • Published : 2010.09.20

Abstract

Catalytic conversion of structurally different epoxides to the corresponding 1,2-diacetoxy esters was carried out readily with phosphomolybdic acid alone or its supported on $SiO_2$. The reactions were carried out under solvolytic or solvent free conditions within 5-15 min at room temperature. The product 1,2-diacetates were obtained in high to excellent yields. Supporting of phosphomolybdic acid on $SiO_2$ showed the better catalytic activity than $Al_2O_3$. Conversion of optically pure R-(+)-styrene oxide to S-(+)-1,2-diacetoxy-1-phenylethane was carried with phosphomolybdic acid in high yield and stereospecificity.

Keywords

References

  1. Jacobsen, E. N.; Wu, M. H. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: New York, 1999.
  2. Pattenden, G. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 3.
  3. Pawda, A.; Pearson, W. H.; Lian, B. W.; Bergmeier, S. C. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: New York, 1996; Vol. 1a.
  4. Green, T. W.; Wuts, P. G. M. In Protective Groups in Organic Synthesis, 4th ed.; Wiley: New York, 2006.
  5. Malinowskii, M. S.; Yudasina, A. G.; Skrodoskaya, T. S.; Larionova, V. G. Ukr. Khim. Zh. 1967, 33, 598 (Chem. Abstr. 68, 104850).
  6. Shvets, V. F.; Al-Wahib, W. I. Kinet. Katal. 1975, 16, 785.
  7. Shvets, V. F.; Al-Wahib, W. I. Kinet. Katal. 1975, 16, 425.
  8. Abdur Rahman, M.; Fraser-Reid, B. J. Am. Chem. Soc. 1985, 107, 5576. https://doi.org/10.1021/ja00305a068
  9. Perri, S. T.; Falling, S. N. U.S. Pat. 1997, 5,663,422.
  10. Perri, S. T.; Falling, S. N. U.S. Pat. 1997, 5,623,086.
  11. Ramesh, P.; Niranjan Reddy, V. L.; Venugopal, D.; Subrahmanyam, M.; Venkateswarlu, Y. Synth. Commun. 2001, 31, 2599. https://doi.org/10.1081/SCC-100105384
  12. Fan, R.-H.; Hou, X.-L. Tetrahedron Lett. 2003, 44, 4411. https://doi.org/10.1016/S0040-4039(03)00943-2
  13. Dalpozzo, R.; De Nino, A.; Nardi, M.; Russo, B.; Procopio, A. Arkivoc 2006, 6, 67.
  14. Das, B.; Saidi Reddy, V.; Tehseen, F. Tetrahedron Lett. 2006, 47, 6865. https://doi.org/10.1016/j.tetlet.2006.07.055
  15. Yadollahi, B.; Kabiri Esfahani, F. Chem. Lett. 2007, 36, 676. https://doi.org/10.1246/cl.2007.676
  16. Azizi, N.; Mirmashhori, B.; Saidi, M. R. Catal. Commun. 2007, 8, 2198. https://doi.org/10.1016/j.catcom.2007.04.032
  17. Timofeeva, M. N. Appl. Catal. A 2003, 256, 19. https://doi.org/10.1016/S0926-860X(03)00386-7
  18. Heravi, M. M.; Sadjadi, S. J. Iran. Chem. Soc. 2009, 6, 1. https://doi.org/10.1007/BF03246501
  19. Day, J. H.; Solak, T. A. J. Am. Chem. Soc. 1951, 73, 469.
  20. Murphy, E. F.; Schneider, M.; Mallat, T.; Baiker, A. Synthesis 2001, 547.
  21. Jin, T.-S.; Li, Y.-W.; Sun, G.; Li, T.-S. J. Chem. Res. 2002, 456.
  22. Jin, T.-S.; Li, Y.-W.; Sun, G.; Song, X.-R.; Li, T.-S. J. Chem. Res. 2003, 322.
  23. Defoin, A. Synthesis 2004, 706.
  24. Smitha, G.; Miriyala, B.; Williamson, J. S. Synlett 2005, 839.
  25. Nagaiah, K.; Sreenu, D.; Rao, R. S.; Vashishta, G.; Yadav, J. S. Tetrahedron Lett. 2006, 47, 4409. https://doi.org/10.1016/j.tetlet.2006.04.085
  26. Zeynizadeh, B.; Sadighnia, L. Phosphorus, Sulfur and Silicon 2008, 183, 2274. https://doi.org/10.1080/10426500801960554
  27. Kamal, A.; Chouhan, G. Tetrahedron Lett. 2004, 45, 8801. https://doi.org/10.1016/j.tetlet.2004.10.015
  28. Kamal, A.; Sandbhor, M.; Ahmed, K.; Adil, S. F.; Shaik, A. A. Tetrahedron Asym. 2003, 14, 3861. https://doi.org/10.1016/j.tetasy.2003.09.035
  29. Detry, J.; Rosenbaum, T.; Lütz, S.; Hahn, D.; Jaeger, K.-E.; Müller, M.; Eggert, T. Appl. Microbiol. Biotechnol. 2006, 72, 1107. https://doi.org/10.1007/s00253-006-0391-9
  30. Bodai, V.; Orovecz, O.; Szakacs, G.; Novak, L.; Poppe, L. Tetrahedron Asym. 2003, 14, 2605. https://doi.org/10.1016/S0957-4166(03)00568-8
  31. Crout, D. H. G.; Gaudet, V. S. B.; Laumen, K.; Schneider, M. P. Chem. Commun. 1986, 10, 808.
  32. Aldrich Handbook of Fine Chemicals and Laboratory Equipment, 2009-2010.
  33. Abd El-Wahab, M. M. M.; Said, A. A. J. Mol. Catal. A 2005, 240, 109.
  34. Kumar, S. R.; Leelavathi, P. J. Mol. Catal. A 2007, 266, 65. https://doi.org/10.1016/j.molcata.2006.10.045
  35. Kumar, G. D. K.; Baskaran, S. J. Org. Chem. 2005, 70, 4520. https://doi.org/10.1021/jo0502697
  36. Yadav, J. S.; Satyanarayana, M.; Balanarsaih, E.; Raghavendra, S. Tetrahedron Lett. 2006, 47, 6095. https://doi.org/10.1016/j.tetlet.2006.06.084
  37. Kumar, G. D. K.; Baskaran, S. Synlett 2004, 1719.
  38. Yadav, J. S.; Raghavendra, S.; Satyanarayana, M.; Balanarsaiah, E. Synlett 2005, 2461.
  39. Srihari, P.; Sunder Reddy, J. S.; Sekhar Mandal, S.; Satyanarayana, K. Synthesis 2008, 1853.
  40. Buckingham, J. In Dictionary of Organic Compounds, 5th ed.; Chapman and Hall: New York, 1982.

Cited by

  1. One-Pot Catalytic Conversion of Epoxides to 1,2-Diacetates with Hydride Transferring Agents in Acetic Anhydride vol.41, pp.5, 2011, https://doi.org/10.1080/00397911003629515
  2. ChemInform Abstract: A Green Protocol for Catalytic Conversion of Epoxides to 1,2-Diacetoxy Esters with Phosphomolybdic Acid Alone or Its Supported on Silica Gel. vol.42, pp.6, 2011, https://doi.org/10.1002/chin.201106049
  3. First report on the kinetics of the uncatalyzed esterification of cellulose under homogeneous reaction conditions: a rationale for the effect of carboxylic acid anhydride chain-length on the degree of biopolymer substitution vol.19, pp.1, 2012, https://doi.org/10.1007/s10570-011-9622-z
  4. Regio- and stereoselective synthesis of new diaminocyclopentanols vol.10, pp.None, 2010, https://doi.org/10.3762/bjoc.10.262
  5. A highly efficient protocol for regioselective ring-opening of epoxides with alcohols, water, acetic acid, and acetic anhydride catalyzed by SbF3 vol.191, pp.7, 2010, https://doi.org/10.1080/10426507.2015.1135439
  6. A highly efficient protocol for regioselective ring-opening of epoxides with alcohols, water, acetic acid, and acetic anhydride catalyzed by SbF3 vol.191, pp.7, 2010, https://doi.org/10.1080/10426507.2015.1135439
  7. Heterogeneous Acidic and Eco-Friendly Reagents for Mild and Convenient Conversion of Epoxides to 1,2-Diacetates vol.40, pp.5, 2016, https://doi.org/10.3184/174751916x14604770409296