DOI QR코드

DOI QR Code

Studies on the Different Reaction Pathways between 3-Acetyl-5-benzoyl-6-methyl-2-phenyl-4H-pyran-4-one and Alkylamines

  • Genc, Hasan (Yuzuncu Yil University, Faculty of Education, Department of Sciences) ;
  • Tan, Meltem (Yuzuncu Yil University, Faculty of Arts and Sciences, Department of Chemistry) ;
  • Gumus, Selcuk (Yuzuncu Yil University, Faculty of Arts and Sciences, Department of Chemistry) ;
  • Menges, Nurettin (Yuzuncu Yil University, Faculty of Arts and Sciences, Department of Chemistry) ;
  • Bildirici, Ishak (Yuzuncu Yil University, Faculty of Arts and Sciences, Department of Chemistry) ;
  • Sener, Ahmet (Yuzuncu Yil University, Faculty of Arts and Sciences, Department of Chemistry)
  • Received : 2010.06.03
  • Accepted : 2010.08.03
  • Published : 2010.09.20

Abstract

3-Acetyl-5-benzoyl-6-methyl-2-phenyl-4H-pyran-4-one has been subjected to condensation with a series of primary amines (ethylamine - octylamine) to clarify the proposed mechanism in our previous study. The reactions of the shorter amines of the series (ethylamine - butylamine) yielded unsymmetric pyridinone products, whereas the other amines (pentylamine - octylamine) yielded symmetrical pyridinones. The starting material and the products as well as the intermediates have been subjected to theoretical analysis by quantum chemical calculations at B3LYP/6-31G(d,p) level, which provided supporting data for the experimental findings.

Keywords

References

  1. Katritzky, A. R. Handbook of Heterocyclic Chemistry; Elsevier: Gainesville, 2000.
  2. Gilchrist, T. L. Heterocyclic Chemistry; Pitman: Marshfield, 1985.
  3. Young, D. W. Heterocyclic Chemistry; Longman: London, 1975.
  4. Sainsbury, M. Heterocyclic Chemistry; RSC Publishing: Cambridge, 2001.
  5. Dong, D.; Bi, X.; Liu, Q.; Cong, F. Chem. Commun. 2005, 28, 3580.
  6. Peratoner, A. Gazz. Chim. Ital. 1906, 36, 52.
  7. Erol, D. D.; Yulug, N. Eur. J. Med. Chem. 1999, 29, 893. https://doi.org/10.1016/0223-5234(94)90113-9
  8. Knops, H. J.; Eue, L.; Schmint, R. R. Ger.Offen. DE 3, 210, 598 (Cl. C07D213/68), 06 Oct.1983, Chem. Abstr. 1984, 34412j, 100.
  9. Hershko, C.; Theanacho, E. N.; Spira, D. T.; Peter, H. H.; Dobbin, P.; Hider, R. C. Blood 1991, 77, 637.
  10. Williams, W. R. H. Can. J. Chem. 1976, 54, 3377. https://doi.org/10.1139/v76-485
  11. Faith, W.; Campell, H. F.; Kuhla, D. Eur. Pat. Appl. WO 88/00468 (C07 D 401/10, C07 D 401/14, A61K 31/44) 28 January 1988.
  12. Hwang, D. R.; Proctor, G. R.; Driscoll, J. S. J. Pharm. Sci. 1980, 69, 1074. https://doi.org/10.1002/jps.2600690923
  13. Hershko, C.; Theanacho, E. N.; Spira, D. T.; Peter, H. H.; Dobbin, P.; Aytemir, M. D.; Uzbay, T.; Erol, D. D. Arzneim-Forsch/Drug Res. 1999, 49(3), 250.
  14. Saelens, J. K.; Bernard, P. S.; Wilson, D. E. Brain Res. Bull. 1980, 5, 533.
  15. Waldmeir, P. C.; Buchle, A. M.; Steulet, A. F. Biochem. Pharm. 1993, 45, 2417. https://doi.org/10.1016/0006-2952(93)90222-I
  16. Sener, A.; Eskinoba, S.; Bildirici, I.; Genc, H.; Kasımogullari, R. J. Heterocyclic. Chem. 2007, 44, 337. https://doi.org/10.1002/jhet.5570440209
  17. Sahin, Z. S.; Isik, S.; Sener, A.; Tan, M. Acta Crystallogr., Sect. E: Struct. Rep. Online 2009, E65, 619.
  18. Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209. https://doi.org/10.1002/jcc.540100208
  19. Stewart, J. J. P. J. Comput. Chem. 1989, 10, 221. https://doi.org/10.1002/jcc.540100209
  20. Leach, A. R. Molecular Modelling; Longman: Essex, 1997.
  21. Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, 1133. https://doi.org/10.1103/PhysRev.140.A1133
  22. Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: London, 1989.
  23. Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  24. Vosko, S. H.; Vilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200. https://doi.org/10.1139/p80-159
  25. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  26. Scuseria, G. E. J. Chem. Phys. 1992, 97, 7528. https://doi.org/10.1063/1.463977
  27. Sosa, C.; Lee, C. J. Chem. Phys. 1993, 98, 8004.
  28. Wilson, P. J.; Amos, R. D.; Handy, N. C. Phys. Chem. Chem. Phys. 2000, 2, 187. https://doi.org/10.1039/a907167i
  29. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B. 01, Gaussian Inc., Wallingford, CT, 2004.

Cited by

  1. 2,3-Furandiones vol.50, pp.S1, 2013, https://doi.org/10.1002/jhet.1062
  2. Transition-Metal-Catalyzed Regiodivergent and Stereoselective Access to Branched and Linear Allylated 4-Pyridones vol.23, pp.27, 2017, https://doi.org/10.1002/chem.201701382