DOI QR코드

DOI QR Code

Two Novel 3-D Zinc Compounds with Mixture Ligands of H3BTB and 4,4'-Bipy: Crystal Structures, Blue Fluorescence and Single Point Energy Calculation

  • Zhang, Xiu-Cheng (College of Science, Northeast Forestry University) ;
  • Xu, Ling (Department of Chemistry, Sungkyunkwan University) ;
  • Liu, Wen-Guang (College of Science, Northeast Forestry University) ;
  • Liu, Bing (Department of Chemistry, University of Aveiro, CICECO, Campus Universitario de Santiago)
  • Received : 2010.05.27
  • Accepted : 2010.07.19
  • Published : 2010.09.20

Abstract

Two 3-D zinc framework compounds, $[Zn_6(BTB)_4(4,4'-bipy)_4(H_2O)_4]{\cdot}9H_2O$ (1) and $[Zn_3(BTB)_2(4,4'-bipy)_2(H_2O)_2]{\cdot}5H_2O$ (2) ($H_3BTB$ = 1,2,3-benzenetricarboxylic acid, 4,4'-bipy = 4,4'-bipyridine), are obtained from the diffusion method and hydrothermal reaction respectively. Though 1 and 2 has the same coordination geometries of zinc atoms and coordination mode of $BTB^{3-}$, their 2-D layers are different: mirror symmetric layers in 1; parallel ones in 2, further connecting by 4,4'-bipy into 3-D frameworks. The hydrothermal reaction of 2 results in a more stable 3-D framework than the one in 1, which is supported by the single point energy calculations. 1 and 2 show similar blue fluorescence at 417 nm, which can be assigned to LMCT.

Keywords

References

  1. Ye, B. H.; Tong, M. L.; Chen, X. M. Coord. Chem. Rev. 2005, 249, 545. https://doi.org/10.1016/j.ccr.2004.07.006
  2. Liu, G. X.; Zhu, K.; Chen, H.; Huang, R. Y.; Ren, X. M. Cryst. Eng. Comm. 2008, 10, 1527. https://doi.org/10.1039/b811498f
  3. Lu, J. Y. Coord. Chem. Rev. 2003, 246, 327. https://doi.org/10.1016/j.cct.2003.08.005
  4. Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853. https://doi.org/10.1021/cr9601324
  5. Melanie, A. P.; Darren, W. J. Chem. Soc. Rev. 2007, 36, 1441. https://doi.org/10.1039/b610405n
  6. Fruhauf, H. W. Chem. Rev. 1997, 97, 523. https://doi.org/10.1021/cr941164z
  7. Fujita, M.; Tominag, A. M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005, 38, 371.
  8. Streubel, R.; Bode, M.; Frantzius, G. V.; Hrib, C.; Jones, P. G.; Monsees, A. Organometallics 2007, 26, 1371. https://doi.org/10.1021/om0608455
  9. Carlucci, L.; Ciani, G.; Proserpio, D. M. Coord. Chem. Rev. 2003, 246, 247. https://doi.org/10.1016/S0010-8545(03)00126-7
  10. Hagrman, P. J.; Hagrman, D.; Zubieta, J. Angew. Chem. Int. Ed. 1999, 38, 2638. https://doi.org/10.1002/(SICI)1521-3773(19990917)38:18<2638::AID-ANIE2638>3.0.CO;2-4
  11. Fujita, M. Acc. Chem. Res. 1998, 32, 53. https://doi.org/10.1021/ar9701068
  12. Chui, S. S. Y.; Lo, S. M.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148. https://doi.org/10.1126/science.283.5405.1148
  13. Suh, M. P.; Ko, J. W.; Choi, H. J. J. Am. Chem. Soc. 2002, 124 10976. https://doi.org/10.1021/ja017560y
  14. Yaghi, O. M.; Li, G. M.; Li, H. L. Nature 1995, 378, 703. https://doi.org/10.1038/378703a0
  15. Prior, T. J.; Rosseinsky, M. j. Inorg. Chem. 2003, 42, 1564. https://doi.org/10.1021/ic025775i
  16. Cotton, F. A.; Lin, C.; Murillo, C. A. Inorg. Chem. 2001, 40, 6413. https://doi.org/10.1021/ic0104959
  17. Dimos, A.; Michaelides, A.; Skoulika, S. Chem. Mater. 2000, 12, 3256. https://doi.org/10.1021/cm001143n
  18. Pan, L.; Woodlock, E. B.; Wang, X. T.; Zheng, C. Inorg. Chem. 2000, 39, 4174. https://doi.org/10.1021/ic000209d
  19. Hu, J. Y.; Li, J. P.; Zhao, J. A.; Hou, H. W.; Fan, Y. T. Inorg. Chem. Acta 2009, 362, 5023. https://doi.org/10.1016/j.ica.2009.08.009
  20. Luo, G. G.; Sun, D.; Zhang, N.; Xu, Q. J.; Lin, L. R.; Huang, R. B.; Zheng, L. S. Inorg. Chem. Commun. 2010, 13, 10. https://doi.org/10.1016/j.inoche.2009.10.004
  21. Fu, Y.; Su, J.; Yang, S. H.; Li, G. B.; Liao, F. H.; Xiong, M.; Lin, J. H. Inorg. Chem. Acta 2010, 363, 645. https://doi.org/10.1016/j.ica.2009.11.019
  22. Gutschke, S. O. H.; Price, D. J.; Powell, A. K.; Wood, P. T. Angew. Chem., Int. Ed. Engl. 2001, 40, 1920. https://doi.org/10.1002/1521-3773(20010518)40:10<1920::AID-ANIE1920>3.0.CO;2-2
  23. Zheng, Y. Z.; Tong, M. L.; Chen, X. M. New. J. Chem. 2004, 28, 1412. https://doi.org/10.1039/b409696g
  24. Xu, L.; Liu, B.; Guo, G. C.; Shun, J. S. Inorg. Chem. Commun. 2006, 9, 220. https://doi.org/10.1016/j.inoche.2005.10.032
  25. Zhang, Z. J.; Liu, H. Y.; Zhang, S. Y.; Shi, W.; Cheng, P. Inorg. Chem. Commun. 2009, 12, 223. https://doi.org/10.1016/j.inoche.2008.12.017
  26. Zheng, Y. Z.; Zhang, Y. B.; Tong, M. L.; Xue, W.; Chen, X. M. Dalton Trans. 2009, 1396.
  27. Liu, B.; Xu, L. Inorg. Chem. Commun. 2006, 9, 364. https://doi.org/10.1016/j.inoche.2006.01.004
  28. Rigaku, CrystalClear 1.3.6, Software User's Guide for the Rigaku. R-Axis, Mercury and Jupiter CCD Automated X-ray Imaging System. Rigaku Molecular Structure Corporation, 2002, Utah, USA.
  29. Siemens, SHELXTLTM Version 5 Reference Manual, Siemens Engergy & Automation Inc. Madison, Wisconsin, 1994, USA.
  30. Brown, I. D.; Altermatt, D. Acta Crystallogr., Sect. B 1985, 41, 244. https://doi.org/10.1107/S0108768185002063
  31. Spek, A. L. Acta Crystallogr. 1990, A46, C43.
  32. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. https://doi.org/10.1063/1.448799
  33. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, J. T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA, 2003.
  34. Meijerink, A.; Blasse, G.; Glasbeek, M. J. Phys. Condense. Matter. 1990, 2, 6303. https://doi.org/10.1088/0953-8984/2/29/008
  35. Bertoncello, R.; Bettinelli, M.; Casarin, M.; Gulino, A.; Tondello, E.; Vittadini, A. Inorg. Chem. 1992, 31, 1558. https://doi.org/10.1021/ic00035a008

Cited by

  1. Coordination Frameworks with Benzene-1,2,3-tricarboxylate Tecton and Flexible Dipyridyl Co-Ligand: A New Type of Entangled Architecture and a Unique 4-Connected Topological Network vol.11, pp.8, 2011, https://doi.org/10.1021/cg200366a