DOI QR코드

DOI QR Code

Kinetic and Theoretical Studies on Pyridinolysis of 2,4-Dinitrophenyl X-Substituted Benzoates: Effect of Substituent X on Reactivity and Mechanism

  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Kim, Eun-Hee (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Im, Li-Ra (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Mishima, Masaaki (Institute for Materials Chemistry and Engineering, Kyushu University)
  • 투고 : 2010.07.06
  • 심사 : 2010.07.26
  • 발행 : 2010.09.20

초록

Second-order rate constants ($k_N$) have been measured spectrophotometrically for reactions of 2,4-dinitrophenyl X-substituted benzoates (X = 4-MeO, H and 4-$NO_2$) with a series of Z-substituted pyridines in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Br${\o}$nsted-type plots exhibit downward curvature (e.g., $\beta_2$ = 0.89 ~ 0.96 when $pK_a$ < 9.5 while $\beta_1$ = 0.38 ~ 0.46 when $pK_a$ > 9.5), indicating that the reaction proceeds through a stepwise mechanism with a change in rate-determining step (RDS). The ${pK_a}^o$, defined as the $pK_a$ at the center of Br${\o}$nsted curvature, has been analyzed to be 9.5 regardless of the electronic nature of the substituent X in the benzoyl moiety. Dissection of $k_N$ into the microscopic rate constants $k_1$ and $k_2/k_{-1}$ ratio has revealed that $k_1$ is governed by the electronic nature of the substituent X but the $k_2/k_{-1}$ ratio is not. Theoretical calculations also support the argument that the electronic nature of the substituent X in the benzoyl moiety does not influence the $k_2/k_{-1}$ ratio.

키워드

참고문헌

  1. Jencks, W. P. Chem. Rev. 1985, 85, 511-527. https://doi.org/10.1021/cr00070a001
  2. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. https://doi.org/10.1021/cr990001d
  3. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Singapore, 1997; Chapter 7.
  4. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70, 2679-2685. https://doi.org/10.1021/jo047742l
  5. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092. https://doi.org/10.1021/jo051168b
  6. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2004, 69, 6711-6714. https://doi.org/10.1021/jo048935b
  7. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 2004, 69, 4802-4807. https://doi.org/10.1021/jo049559y
  8. Castro, E. A.; Cubillos, M.; Aliaga, M.; Evangelisti, S.; Santos, J. G. J. Org. Chem. 2004, 69, 2411-2416. https://doi.org/10.1021/jo035451r
  9. Um, I. H.; Hwang, S. J.; Baek, M. H.; Kim, E. J. J. Org. Chem. 2006, 71, 9191-9197. https://doi.org/10.1021/jo061682x
  10. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970-6980. https://doi.org/10.1021/ja00463a033
  11. Castro, E. A.; Santander, C. L. J. Org. Chem. 1985, 50, 3595-3600. https://doi.org/10.1021/jo00219a029
  12. Castro, E. A.; Valdivia, J. L. J. Org. Chem. 1986, 51, 1668-1672. https://doi.org/10.1021/jo00360a007
  13. Castro, E. A.; Steinfort, G. B. J. Chem. Soc., Perkin Trans. 2 1983, 453-457.
  14. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 7788-7791. https://doi.org/10.1021/jo051052f
  15. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 3530-3536. https://doi.org/10.1021/jo050119w
  16. Castro, E. A.; Vivanco, M.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2004, 69, 5399-5404. https://doi.org/10.1021/jo049260f
  17. Castro, E. A.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2003, 68, 8157-8161. https://doi.org/10.1021/jo0348120
  18. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444. https://doi.org/10.1021/jo048227q
  19. Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172. https://doi.org/10.1021/jo049812u
  20. Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bae, S. K. J. Org. Chem. 2003, 68, 5180-5185. https://doi.org/10.1021/jo034190i
  21. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629. https://doi.org/10.1021/jo050606b
  22. Lee, I.; Sung, D. D. Curr. Org. Chem. 2004, 8, 557-567. https://doi.org/10.2174/1385272043370753
  23. Oh, H. K.; Park, J. E.; Sung, I.; Lee, D. D. J. Org. Chem. 2004, 69, 9285-9288. https://doi.org/10.1021/jo0484676
  24. Oh, H. K.; Ha, J. S.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 8219-8223. https://doi.org/10.1021/jo0487247
  25. Lumbiny, B. J.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 2065-2068. https://doi.org/10.5012/bkcs.2008.29.10.2065
  26. Lumbiny, B. J.; Adhikar, K. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 1769-1773. https://doi.org/10.5012/bkcs.2008.29.9.1769
  27. Adhikary, K. K.; Lumbiny, B. J.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 851-855. https://doi.org/10.5012/bkcs.2008.29.4.851
  28. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824-3829. https://doi.org/10.1021/ja00766a027
  29. Maude, A. B.; Williams, A. J. Chem. Soc. Perkin Trans. 2 1997, 179-183.
  30. Castro, E. A.; Acuna, M.; Soto, C.; Trujillo, C.; Vasquez, B.; Santos, J. G. J. Phys. Org. Chem. 2008, 21, 816-822. https://doi.org/10.1002/poc.1399
  31. Galabov, B.; Ilieva, S.; Hadjieva, B.; Atanasov, Y.; Schaefer, H. F., III. J. Phys. Chem. A 2008, 112, 6700-6707. https://doi.org/10.1021/jp8007514
  32. Spillane, W. J.; McCaw, C. J. A. J. Phys. Org. Chem. 2006, 19, 512-517. https://doi.org/10.1002/poc.1050
  33. Spillane, W. J.; McGrath, P.; Brack, C.; O’Byrne, A. B. J. Org. Chem. 2001, 66, 6313-6316. https://doi.org/10.1021/jo015691b
  34. Tsang, W. Y.; Ahmed, N.; Hemming, K.; Page, M. I. J. Org. Chem. 2008, 73, 4504-4512. https://doi.org/10.1021/jo800407x
  35. Um, I. H.; Jeon, J. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243. https://doi.org/10.1002/chem.200500647
  36. Um, I. H.; Seok, J. A.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2003, 68, 7742-7746. https://doi.org/10.1021/jo034637n
  37. Um, I. H.; Han, H. J.; Baek, M. H.; Bae, S. Y. J. Org. Chem. 2004, 69, 6365-6370. https://doi.org/10.1021/jo0492160
  38. Castro, E. A.; Moodie, R. B. J. Chem. Soc. Chem. Commun. 1973, 828-829.
  39. Castro, E. A.; Araneda, C. A.; Santos, J. G. J. Org. Chem. 1997, 62, 126-129. https://doi.org/10.1021/jo961275t
  40. Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334-338. https://doi.org/10.1021/ja01607a027
  41. Gaussian 03 program, Revision D.01: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.
  42. Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811. https://doi.org/10.1021/jp000497z
  43. Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027-2094. https://doi.org/10.1021/cr00031a013
  44. Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995-2001. https://doi.org/10.1021/jp9716997

피인용 문헌

  1. -Methoxy Group on Reactivity and Reaction Mechanism vol.76, pp.18, 2011, https://doi.org/10.1021/jo201387h
  2. Alkali-Metal Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Benzoate and Benzyl 2-Pyridyl Carbonate: Effect of Modification of Nonleaving Group from Benzoyl to Benzyloxycarbonyl vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.519
  3. Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate in Acetonitrile vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1547