DOI QR코드

DOI QR Code

Growth and Characterization of Conducting ZnO Thin Films by Atomic Layer Deposition

  • Min, Yo-Sep (Department of Chemical Engineering, Konkuk University) ;
  • An, Cheng-Jin (Department of Chemical Engineering, Konkuk University) ;
  • Kim, Seong-Keun (WCU Hybrid Materials Program, Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University) ;
  • Song, Jae-Won (WCU Hybrid Materials Program, Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University) ;
  • Hwang, Cheol-Seong (WCU Hybrid Materials Program, Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University)
  • Received : 2010.03.16
  • Accepted : 2010.07.13
  • Published : 2010.09.20

Abstract

ZnO thin films were grown on Si or $SiO_2$/Si substrates, at growth temperatures ranging from 150 to $400^{\circ}C$, by atomic layer deposition (ALD) using diethylzinc and water. Despite the large band gap of 3.3 eV, the ALD ZnO films show high n-type conductivity, i.e. low resistivity in the order of $10^{-3}\;{\Omega}cm$. In order to understand the high conductivity of ALD ZnO films, the films were characterized with X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, elastic recoil detection, Rutherford backscattering, Photoluminescence, and Raman spectroscopy. In addition, the various analytical data of the ZnO films were compared with those of ZnO single crystal. According to our analytical data, metallic zinc plays an important role for the high conductivity in ALD ZnO films. Therefore when the metallic zinc was additionally oxidized with ozone by a modified ALD sequence, the resistivity of ZnO films could be adjusted in a range of $3.8{\times}10^{-3}\;{\sim}\;19.0\;{\Omega}cm$ depending on the exposure time of ozone.

Keywords

References

  1. Ozgur, U.; Alivov, Y. I.; Teke, L. A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc, H. J. Appl. Phys. 2005, 98, 041301. https://doi.org/10.1063/1.1992666
  2. Hirschwald, W. H. Acc. Chem. Res. 1985, 18, 228. https://doi.org/10.1021/ar00116a001
  3. Ellmer, K. J. Phys. D: Appl. Phys. 2001, 34, 3097. https://doi.org/10.1088/0022-3727/34/21/301
  4. Pearton, S. J.; Norton, D. P.; Ip, K.; Heo, Y. W. J. Vac. Sci. Technol. B 2004, 22, 932. https://doi.org/10.1116/1.1714985
  5. Wang, Z. L. Materials Today 2004, 6, 26.
  6. Studenikin, S. A.; Golego, N.; Cocivera, M. J. Appl. Phys. 1998, 84, 2287. https://doi.org/10.1063/1.368295
  7. Zhang, Y.; Zhang, Z.; Lin, B.; Fu, Z.; Xu, J. J. Phys. Chem. B 2005, 109, 19200. https://doi.org/10.1021/jp0538058
  8. Carcia, P. F.; McLean, R. S.; Reilly, M. H.; Nunes, G., Jr. Appl. Phys. Lett. 2003, 82, 1117. https://doi.org/10.1063/1.1553997
  9. Ortega-Lopez, M.; Avila-Garcia, A.; Albor-Aguilera, M. L.; Sanchez Resendiz, V. M. Mater. Res. Bull. 2003, 38, 1241. https://doi.org/10.1016/S0025-5408(03)00083-7
  10. Zhang, Y.; Du, G.; Yang, X.; Zhao, B.; Ma, Y.; Yang, T.; Ong, H. C.; Liu, D.; Yang, S. Semicond. Sci. Technol. 2004, 19, 755. https://doi.org/10.1088/0268-1242/19/6/017
  11. Lujala, V.; Skarp, J.; Tammenmaa, M.; Suntola, T. Appl. Surf. Sci. 1994, 82/83, 34. https://doi.org/10.1016/0169-4332(94)90192-9
  12. Yamada, A.; Sang, B.; Konagai, M. Appl. Surf. Sci. 1997, 112, 216. https://doi.org/10.1016/S0169-4332(96)01022-7
  13. Kaiya, K.; Yoshii, N.; Omichi, K.; Takahashi, N.; Nakamura, T.; Okamoto, S.; Yamamoto, H. Chem. Mater. 2001, 13, 1952. https://doi.org/10.1021/cm0006594
  14. Park, S. H.; Lee, Y. E. J. Mater. Sci. 2004, 39, 2195. https://doi.org/10.1023/B:JMSC.0000017786.81842.ae
  15. Kim, S. K.; Hwang, C. S.; Park, S. H.; Yun, S. J. Thin Solid Films 2005, 478, 103. https://doi.org/10.1016/j.tsf.2004.10.015
  16. Lee, S.; Im, Y. H.; Kim, S. H.; Hahn, Y. B. Supperlattice Microst. 2006, 39, 24. https://doi.org/10.1016/j.spmi.2005.08.028
  17. Suntola, T. In Handbook of Crystal Growth; Hurle, D. T. J., Ed.; Elsevier: Amsterdam, 1994; Chapt. 3, p 601.
  18. Maeda, K.; Sato, M.; Niikura, I.; Fukuda, T. Semicond. Sci. Technol. 2005, 20, S49. https://doi.org/10.1088/0268-1242/20/4/006
  19. Kohiki, S.; Nishitani, M.; Wada, T.; Hirao, T. Appl. Phys. Lett. 1994, 64, 2876. https://doi.org/10.1063/1.111401
  20. Heiland, G.; Mollwo, E.; Stockmann, F. In Solid State Physics; Seitz, F., Turnbull, D., Eds.; Academic: New York, 1959; Vol. 8, p 191.
  21. Van de Walle, C. G. Phys. Rev. Lett. 2000, 85, 1012. https://doi.org/10.1103/PhysRevLett.85.1012
  22. Look, D. C.; Hemsky, J. W.; Sizelove, J. R. Phys. Rev. Lett. 1999, 82, 2552. https://doi.org/10.1103/PhysRevLett.82.2552
  23. Janotti, A.; Van de Walle, C. G. Appl. Phys. Lett. 2005, 87, 122102. https://doi.org/10.1063/1.2053360
  24. Chen, L. Y.; Chen, W. H.; Wang, J. J.; Hong, F. C. N.; Su, Y. K. Appl. Phys. Lett. 2004, 85, 5628. https://doi.org/10.1063/1.1835991
  25. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, 2005.
  26. Birkholz, M.; Selle, B.; Fenske, F.; Fuhs, W. Phys. Rev. B 2003, 68, 205414. https://doi.org/10.1103/PhysRevB.68.205414
  27. Littbarski, R. In Zinc Oxide; Hirschwald, W., Ed.; North-Holland: Amsterdam, 1981; Vol. 7, p 212.
  28. Lee, J. M.; Kim, K. K.; Park, S.-J.; Choi, W.-K. Appl. Phys. Lett. 2001, 78, 3842. https://doi.org/10.1063/1.1379061
  29. Zhang, S. B.; Wei, S.-H.; Zunger, A. Phys. Rev. B 2001, 63, 75205. https://doi.org/10.1103/PhysRevB.63.075205
  30. Tan, S. T.; Chen, B. J.; Sun, X. W.; Yu, M. B.; Zhang, X. H.; Chua, S. J. J. Electron. Mater. 2005, 34, 1172. https://doi.org/10.1007/s11664-005-0247-6
  31. Wagner, C. D.; Naumkin, A. V.; Kraut-Vass, A.; Allison, J. W.; Powell, C. J.; Rumble, J. R., Jr. NIST X-ray Photoelectron Spectroscopy Database, available in http://srdata.nist.gov/xps/.
  32. Vanheusden, K.; Warren, W. L.; Seager, C. H.; Tallant, D. R.; Voigt, J. A.; Gnade, B. E. J. Appl. Phys. 1996, 79, 7983. https://doi.org/10.1063/1.362349
  33. Vanheusden, K.; Seager, C. H.; Warren, W. L.; Tallant, D. R.; Voigt, J. A. Appl. Phys. Lett. 1996, 68, 403. https://doi.org/10.1063/1.116699
  34. Leiter, F. H.; Alves, H. R.; Hofstaetter, A.; Hofmann, D. M.; Meyer, B. K. Phys. Stat. Sol. B 2001, 226, R4. https://doi.org/10.1002/1521-3951(200107)226:13.0.CO;2-F
  35. Lim, J.; Shin, K.; Kim, H. W.; Lee, C. J. Lumin. 2004, 109, 181. https://doi.org/10.1016/j.jlumin.2004.02.006
  36. Damen, T. C.; Proto, S. P. S.; Tell, B. Phys. Rev. 1966, 142, 570. https://doi.org/10.1103/PhysRev.142.570
  37. Zhaochun, Z.; Baibiao, H.; Yongqin, Y.; Deliang, C. Mater. Sci. Engin. B 2001, 86, 109. https://doi.org/10.1016/S0921-5107(01)00522-0
  38. Cui, J. B.; Daghlian, C. P.; Gibson, U. J.; Pusche, R.; Geithner, P.; Ley, L. J. Appl. Phys. 2005, 97, 044315. https://doi.org/10.1063/1.1854206

Cited by

  1. Botryoidal growth of crystalline ZnO nanoparticles on a forest of single-walled carbon nanotubes by atomic layer deposition vol.13, pp.10, 2011, https://doi.org/10.1039/c0ce00875c
  2. Effects of Al Concentration on Structural and Optical Properties of Al-doped ZnO Thin Films vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1235
  3. Highly Tunable Electrical Properties in Undoped ZnO Grown by Plasma Enhanced Thermal-Atomic Layer Deposition vol.4, pp.6, 2012, https://doi.org/10.1021/am300458q
  4. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends vol.113, pp.2, 2013, https://doi.org/10.1063/1.4757907
  5. Investigation on Hydrogenation of Metal–Organic Frameworks HKUST-1, MIL-53, and ZIF-8 by Hydrogen Spillover vol.117, pp.15, 2013, https://doi.org/10.1021/jp401367k
  6. Stability of graphitic-like zinc oxide layers under carriers doping: a first-principles study vol.5, pp.24, 2013, https://doi.org/10.1039/c3nr04845d
  7. A comparative study of physical properties of pure and In-doped nanostructured ZnO polycrystalline thin film for optoelectronic applications vol.25, pp.4, 2014, https://doi.org/10.1007/s10854-014-1782-9
  8. , and Aluminum-Doped ZnO Using Poly(vinyl pyrrolidone) vol.26, pp.4, 2014, https://doi.org/10.1021/cm402464z
  9. Effects of Annealing Temperature on the Structural, Optical, and Electrical Properties of ZnO Thin Films Grown on n-Si〈100〉 Substrates by the Sol–Gel Spin Coating Method vol.27, pp.4, 2014, https://doi.org/10.1007/s40195-014-0097-4
  10. Fabrication of two-dimensional zinc oxide nanorod patterns and their application for optical diffraction grating effect vol.49, pp.24, 2014, https://doi.org/10.1007/s10853-014-8541-4
  11. Room Temperature Atomic Layer-like Deposition of ZnO on Functionalized Self-Assembled Monolayers vol.119, pp.2, 2015, https://doi.org/10.1021/jp510285a
  12. Fabrication and characterization of highly sensitive ZnO/Si SAW device with Pd selective layer for F2 gas sensing vol.21, pp.9, 2015, https://doi.org/10.1007/s00542-014-2277-6
  13. Chemical Bath Deposition of ZnO on Functionalized Self-Assembled Monolayers: Selective Deposition and Control of Deposit Morphology vol.31, pp.4, 2015, https://doi.org/10.1021/la5040239
  14. As: Electrical and in-situ X-ray photoelectron spectroscopy characterization vol.55, pp.8S2, 2016, https://doi.org/10.7567/JJAP.55.08PC02
  15. Preparation of ZnO/Al2O3 catalysts by using atomic layer deposition for plasma-assisted non-oxidative methane coupling vol.68, pp.10, 2016, https://doi.org/10.3938/jkps.68.1221
  16. Quasi-metallic behavior of ZnO grown by atomic layer deposition: The role of hydrogen vol.122, pp.2, 2017, https://doi.org/10.1063/1.4994175
  17. 1,5-Pentanediol as an Oxygen Precursor for Atomic Layer Deposition of Zinc Oxide Thin Films vol.29, pp.8, 2017, https://doi.org/10.1021/acs.chemmater.6b05300
  18. Review of tailoring ZnO for optoelectronics through atomic layer deposition experimental variables vol.33, pp.7, 2017, https://doi.org/10.1080/02670836.2016.1198578
  19. Phase Segregation Limit in ZnCdO Thin Films Deposited by Sol–Gel Method: A Study of Structural, Optical and Electrical Properties vol.2, pp.9, 2013, https://doi.org/10.1149/2.001309jss
  20. Atomic layer deposition of ZnO: a review vol.29, pp.4, 2014, https://doi.org/10.1088/0268-1242/29/4/043001
  21. Plasma enhanced atomic layer deposition of ZnO with diethyl zinc and oxygen plasma: Effect of precursor decomposition vol.34, pp.5, 2016, https://doi.org/10.1116/1.4961885
  22. Electrochemical Synthesis of Highly Oriented, Transparent, and Pinhole-Free ZnO and Al-Doped ZnO Films and Their Use in Heterojunction Solar Cells vol.32, pp.41, 2016, https://doi.org/10.1021/acs.langmuir.6b01902
  23. Study of the extrinsic properties of ZnO:Al grown by SILAR technique vol.21, pp.9, 2010, https://doi.org/10.1007/s10008-017-3514-6
  24. Influence of the Lattice Mismatch on the Atomic Ordering of ZnO Grown by Atomic Layer Deposition onto Single Crystal Surfaces with Variable Mismatch (InP, GaAs, GaN, SiC) vol.2, pp.1, 2010, https://doi.org/10.3390/condmat2010003
  25. Adhesive Prebiotic Chemistry Inspired Coatings for Bone Contacting Applications vol.3, pp.5, 2010, https://doi.org/10.1021/acsbiomaterials.7b00038
  26. Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors vol.32, pp.9, 2010, https://doi.org/10.1088/1361-6641/aa7ade
  27. Controlled morphological modifications of ZnO thin films by ion irradiation vol.4, pp.11, 2010, https://doi.org/10.1088/2053-1591/aa9580
  28. Effect of annealing on the microstructural, optical and electrical properties of ZnO nanowires by hydrothermal synthesis for transparent electrode fabrication vol.227, pp.None, 2010, https://doi.org/10.1016/j.mseb.2017.10.006
  29. New insight into the enhanced catalytic performance of ZnPt/HZSM-5 catalysts for direct dehydrogenation of propane to propylene vol.9, pp.8, 2010, https://doi.org/10.1039/c9cy00237e
  30. Realization of Spatially Addressable Library by a Novel Combinatorial Approach on Atomic Layer Deposition: A Case Study of Zinc Oxide vol.21, pp.6, 2019, https://doi.org/10.1021/acscombsci.9b00007
  31. Various Applications of Multifunctional Thin Films with Specific Properties Deposited by the ALD Method vol.293, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/ssp.293.111
  32. Comparative study of the electrical characteristics of ALD‐ZnO thin films using H 2 O and H 2 O 2 as the oxidants vol.102, pp.10, 2019, https://doi.org/10.1111/jace.16429
  33. Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics vol.10, pp.1, 2010, https://doi.org/10.1038/s41467-019-11703-x
  34. Zinc Oxide Grown by Atomic Layer Deposition: From Heavily n‐Type to p‐Type Material vol.257, pp.2, 2010, https://doi.org/10.1002/pssb.201900472
  35. Catalytic Membrane Reactor of Nano (Ag+ZIF-8)@Poly(tetrafluoroethylene) Built by Deep-Permeation Synthesis Fabrication vol.59, pp.21, 2010, https://doi.org/10.1021/acs.iecr.0c00862
  36. Barrier reduction and current transport mechanism in Pt/n-InP Schottky diodes using atomic layer deposited ZnO interlayer vol.32, pp.18, 2010, https://doi.org/10.1007/s10854-021-06758-w