DOI QR코드

DOI QR Code

Plant-based production of therapeutic antibodies

식물기반 치료용 항체생산

  • Kim, Young-Kwan (Department of Biological Science, College of Natural ciences, Wonkwang University) ;
  • So, Yang-Kang (Department of Biological Science, College of Natural ciences, Wonkwang University) ;
  • Park, Da-Young (Department of Biological Science, College of Natural ciences, Wonkwang University) ;
  • Kim, Hyun-Soon (Plant systems engineering research center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jeon, Jae-Heung (Plant systems engineering research center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Choo, Young-Kug (Department of Biological Science, College of Natural ciences, Wonkwang University) ;
  • Ko, Ki-Sung (Department of Biological Science, College of Natural ciences, Wonkwang University)
  • 김영관 (원광대학교 생명과학부) ;
  • 소양강 (원광대학교 생명과학부) ;
  • 박다영 (원광대학교 생명과학부) ;
  • 김현순 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 전재흥 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 추영국 (원광대학교 생명과학부) ;
  • 고기성 (원광대학교 생명과학부)
  • Received : 2010.08.04
  • Accepted : 2010.08.18
  • Published : 2010.09.30

Abstract

Antibodies are powerful and versatile tools to play a critical role in the diagnosis and treatment of many diseases. Their application has been enhanced significantly with the advanced recombinant DNA and heterologonous expression technologies, allowing to produce immunotherapeutic proteins with improved biofunctional properties. However, with currently available technologies, mammalian cell-based therapeutic antibody production, as an alternative for production in humans and animals, is often not plentiful for passive immunotherapeutics in treatment of many diseases. Recently, plant expression systems for therapeutic antibodies have become well-established. Thus, plants have been considered to provide an attractive alternative production system for therapeutic antibodies, as plants have several advantages such as the lack of human pathogens, and low cost of upstream production and flexible scale-up of highly valuable recombinant glycoproteins. Recent advances in modification of posttranslational processing for human-like glycosylation in transgenic plants will make it possible that plant can become a suitable protein expression system over the animal cellbased current production system. This review will discuss recent advances in plant expression technology and issues for their application to therapeutic antibody production.

Keywords

References

  1. Armour, KL, Clark MR, Hadley AG, Williamson LM (1999) Recombinant human IgG molecules lacking Fc-gamma Receptor I binding and monocyte triggering activities. Eur J Immunol 29:2613-2624 https://doi.org/10.1002/(SICI)1521-4141(199908)29:08<2613::AID-IMMU2613>3.0.CO;2-J
  2. Ashford DA, Dwek RA, Welply JK, Amatayakul S, Homans SW, Lis H, Taylor GN, Sharon N, Rademacher, TW (1987) The ${\beta}-1{\rightarrow}2-D-xylose$ and ${\alpha}-1{\rightarrow}3-L-fucose$ substituted N-linked oligosaccharides from Erythrina cristagalli lectin. Eur J Biochem 166:311-320 https://doi.org/10.1111/j.1432-1033.1987.tb13516.x
  3. Bakker H, Bardor M, Molthoff JW, Gomord V, Elbers I, Stevens LH, Jordi W, Lommen A, Faye L, Lerouge P, Bosch, D (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci USA 98:2899-2904 https://doi.org/10.1073/pnas.031419998
  4. Balen B, Krsnik-Rasol M, Zamfir AD, Milo J, Vakhrushev SY, Peter-Katalini J (2006) Glycoproteomic survey of Mammillaria gracillis tissues grown in vitro. J Proteome Res 5:1658-1666 https://doi.org/10.1021/pr0600327
  5. Breedveld FC (2000) Therapeutic monoclonal antibodies. Lancet 355:735-740 https://doi.org/10.1016/S0140-6736(00)01034-5
  6. Brodzik R, Glogowska M, Bandurska K, Okulicz M, Deka D, Ko K, van der Linden J, Leusen JH, Pogrebnyak N, Golovkin M, Steplewski Z, Koprowski H (2006) Plant-derived anti-Lewis Y mAb exhibits biological activities for efficient immunotherapy against human cancer cells. Proc Natl Acad Sci USA 103:8804-8809 https://doi.org/10.1073/pnas.0603043103
  7. Cabanes-Macheteau M, Fitchette-Lainé AC, Loutelier-Bourhis C, Lange C, Vine ND, Ma JK, Lerouge P, Faye L (1999) N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiology 9:365-372 https://doi.org/10.1093/glycob/9.4.365
  8. Capon C, Piller F, Wieruszeski JM, Leroy Y, Fournet B (1990) Structural analysis of the carbohydrate chain isolated from jacalin lectin. Carbohydr Res 199:121-127 https://doi.org/10.1016/0008-6215(90)84099-G
  9. Conrad U, Fiedler U (1998) Compartment-specific accumulation of recombinant immunoglobulins in plant cells:an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol Biol 38:101-109 https://doi.org/10.1023/A:1006029617949
  10. Conrad U, Fiedler U, Artsaenko O, Phillips J (1998) High-level and stable accumulation of single-chain Fv antibodies in plant storage organs. J Plant Physiol 152:708-711 https://doi.org/10.1016/S0176-1617(98)80034-5
  11. D’Andrea G, Bouwstra B, Kamerling JP, Vliegenhart JFG (1988) Primary structure of the xylose-containing N-linked carbohydrate moiety from ascorbic acid oxidase of Cucurbita pepo medullosa. Glycoconj J 5:151-157 https://doi.org/10.1007/BF01061204
  12. Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581-586
  13. De Wilde C, Van Houdt H, De Buck S, Angenon G, De Jaeger G, Depicker A (2000) Plants as bioreactors for protein production: avoiding the problem of transgene silencing. Plant Mol Biol 43:347-359
  14. Doran P (2000) Foreign Protein Production in Plant Tissue Cultures. Current Opinion in Biotechnology 11:199-204 https://doi.org/10.1016/S0958-1669(00)00086-0
  15. Faye L, Johnson KD, Sturm A, Chrispeels MJ (1989) Structure, biosynthesis, and function of asparagine-linked glycans on plant glycoproteins. Physiologia Plantarum 75:309-314 https://doi.org/10.1111/j.1399-3054.1989.tb06187.x
  16. Fitchette AC, Gomord V, Chekkafi A, Faye A (1994) Distribution of xylosylation and fucosylation in the plant Golgi apparatus. Plant J 5:673-682 https://doi.org/10.1111/j.1365-313X.1994.00673.x
  17. Fitchette AC, Gomord V, Cabanes M, Michalski JC, Saint Macary M, Foucher B, Cavelier B, Hawes C, Lerouge P, Faye L (1997) N-glycans harboring the Lewis a epitope are expressed at the surface of plant cells. Plant J 12:1411-1417 https://doi.org/10.1046/j.1365-313x.1997.12061411.x
  18. Fitchette AC, Cabanes-Macheteau M, Marvin L, Martin B, Satiat-Jeunemaitre B, Gomord V, Crooks K, Lerouge P, Faye L, Hawes C (1999) Biosynthesis and immunolocalization of Lewis a-containing N-glycans in the plant cell. Plant Physiol 121:333-344 https://doi.org/10.1104/pp.121.2.333
  19. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803-4807 https://doi.org/10.1073/pnas.80.15.4803
  20. Gomord W, Chamberlain P, Jefferis R, Faye L (2005) Biopharmaceutical production in plants:problems, solutions and opportunities. Trends in Biotechno 23:559-565 https://doi.org/10.1016/j.tibtech.2005.09.003
  21. Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffman N (1984) Inheritance of functional foreign genes in plants. Science 223:496-498 https://doi.org/10.1126/science.223.4635.496
  22. Jamal A, Ahn MH, Song M, Oh EY, Hong J, Choo YK, Ko K, Han YS, Oh SH, Van Der Linden J, Leusen JH, Ko K (2009) Biological Validation of Plant-Derived Anti-Human Colorectal Cancer Monoclonal Antibody CO17-1A. Hybridoma 28:7-12 https://doi.org/10.1089/hyb.2008.0071
  23. Jefferis R, Lund J, Pound JD (1998) IgG-Fc-mediated effector functions:molecular definition of interaction sites for effector ligands and the role of glycosylation. Immunol Rev 163:50-76
  24. Ko K, Steplewski Z, Glogowska M, Koprowski H (2005) Inhibition of tumor growth by plant-derived mAb. Proc Natl Acad Sci USA 102:7026-7030 https://doi.org/10.1073/pnas.0502533102
  25. Ko K, Koprowski H (2005) Plant biopharming of monoclonal antibodies. Virus Res 111:93-100 https://doi.org/10.1016/j.virusres.2005.03.016
  26. Ko K, Tekoah Y, Rudd PM, Harvey DJ, Dwek RA, Spitsin S, Hanlon CA, Rupprecht C, Dietzschold B, Golovkin M, Koprowski H (2003) Function and glycosylation of plantderived antiviral monoclonal antibody. Proc Natl Acad Sci USA 100:8013-8018 https://doi.org/10.1073/pnas.0832472100
  27. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631-664 https://doi.org/10.1146/annurev.bi.54.070185.003215
  28. Kermode AR (1996) Mechanisms of intracellular protein transport and targeting in plant cells. Crit Rev Plant Sci 15:285-423 https://doi.org/10.1080/07352689609701943
  29. Koziel MG, Carozzi NB, Desai N (1996) Optimizing expression of transgenes with an emphasis on post-transcriptional events. Plant Mol Biol 32:393-405 https://doi.org/10.1007/BF00039392
  30. Kuby J (1997) Immunology. Third Edition. W. H. Freeman and Company, New York. 664.
  31. Kusnadi, AR, Evangelista RL, Hood EE, Howard J, Nikolov ZL (1998) Production and purification of two recombinant proteins from transgenic corn. Biotechnol Progress 14:149-155 https://doi.org/10.1021/bp970138u
  32. Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Laine AC, Gomord V, Faye L (1998) N-glycosylation biosynthesis in plants:recent developments and future trends. Plant Mol Biol 38:31-48 https://doi.org/10.1023/A:1006012005654
  33. Ma JK, Chikwamba R, Sparrow P, Fischer R, Mahoney R, Twyman RM (2005) Plant-derived pharmaceuticals-the road forward. Trends Plant Sci 10:580-585 https://doi.org/10.1016/j.tplants.2005.10.009
  34. Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794-805 https://doi.org/10.1038/nrg1177
  35. Ma JK, Hiatt A, Hein M., Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K, Lehner T (1995) Generation and assembly of secretory antibodies in plants. Science 268:716-719 https://doi.org/10.1126/science.7732380
  36. Ma JKC, Vine ND (1999) Plant expression systems for the production of vaccines. Curr Top Microbiol Immunol 236:275-292 https://doi.org/10.1007/978-3-642-59951-4_14
  37. Melo NS, Nimtz M, Conradt HS, Fevereiro PS, Costa J (1997) Identification of the human Lewis(a) carbohydrate motif in a secretory peroxidase from a plant cell suspension culture (Vaccinium myrtillus L.). FEBS Lett 415:186-191 https://doi.org/10.1016/S0014-5793(97)01121-6
  38. Miele L (1997) Plants as bioreactors for biopharmaceuticals:regulatory considerations. Trends Biotechnol 15:45-50 https://doi.org/10.1016/S0167-7799(97)84202-3
  39. Pen J (1996) Comparison of host systems for the production of recombinant proteins. In Transgenic plants:a production system for industrial and pharmaceutical proteins. John Wiley and Sons Ltd 149-167
  40. Priem B, Gitti R, Bush CA, Gross KC (1993) Structure of ten free N-glycans in ripening tomato fruit. Plant Physiol 102:445-458 https://doi.org/10.1104/pp.102.2.445
  41. Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870-875 https://doi.org/10.1038/nbt0901-870
  42. Shah MM, Fujiyama K, Flynn CR, Joshi L (2003) Sialylated endogenous glycoconjugates in plant cells. Nat Biotechnol 21:1470-1471 https://doi.org/10.1038/nbt912
  43. Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, Xie D, Lai J, Stadlen A, Li B, Fox JA, Presta LG (2001) High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem 276:6591-6604 https://doi.org/10.1074/jbc.M009483200
  44. Strasser R, Altmann F, Mach L, Glossl J, Steinkellner H (2004) Generation of Arabidopsis thaliana plants with complex N-glycans lacking beta1,2-linked xylose and core alpha1, 3-linked fucose. FEBS Lett 561:132-136 https://doi.org/10.1016/S0014-5793(04)00150-4
  45. Tekoah Y, Ko K, Koprowski H, Harvey DJ, Wormald MR, Dwek RA, Rudd PM (2004) Controlled glycosylation of therapeutic antibodies in plants. Arch Biochem Biophys 426:266-278 https://doi.org/10.1016/j.abb.2004.02.034