DOI QR코드

DOI QR Code

Effect of Calcium Source using Tilapia Mossambica Scales on the Bone Metabolic Biomarkers and Bone Mineral Density in Rats

Tilapia Mossambica 비늘 (어린) 유래 칼슘소재가 흰쥐의 골격대사지표와 골밀도에 미치는 영향

  • Yoon, Gun-Ae (Department of Food and Nutrition, Dong-Eui University) ;
  • Kim, Kwang-Hyeon (Department of Life Science and Biotechnology, Dong-Eui University)
  • 윤군애 (동의대학교 식품영양학과) ;
  • 김광현 (동의대학교 생명응용학과)
  • Received : 2010.04.15
  • Accepted : 2010.07.13
  • Published : 2010.08.30

Abstract

This study was done to evaluate the effect of Ca source using fish (Tilapia mossambica) scales on the bone metabolism. Male Sprague-Dawley rats, 4 weeks of age, were fed low-calcium diet (0.15% Ca) for 2 weeks. The rats on the low-calcium diet were further assigned to one of following three groups for an additional 4 weeks: 1) Ca-depletion group (LoCa) given 0.15% Ca diet ($CaCO_3$), 2) Ca-repletion group (AdCa) given 0.5% Ca diet ($CaCO_3$), 3) Ca-repletion diet (AdFa) received 0.5% Ca diet (Ca source from Tilapia mossambica scales). Serum parathyroid (PTH) and calcitonin showed no differences among experimental groups. Whereas LoCa group elevated the turnover markers, serum ALP and osteocalcin, and urinary deoxypyridinoline (DPD), AdCa and AdFa groups reduced their values. Elevation in the femoral weight, ash and Ca contents was observed in AdCa and AdFa groups. Bone mineral density was increased in AdCa and AdFa groups by 25-26% compared with LoCa group. These data demonstrate that Ca repletion with either Ca source from Tilapia mossambica scales or $CaCO_3$ is similarly effective in the improvement of bone turnover markers and BMD, suggesting the usefulness of Tilapia mossambica scales in the prevention of bone loss compared with $CaCO_3$.

본 연구는 칼슘고갈식이와 칼슘회복식이를 급여한 SD 종 흰쥐에서 골격대사 지표와 골밀도를 측정함으로써 어린소재 Ca (Tilapia mossambica 비늘을 이용한 칼슘소재)의 유용성을 $CaCO_3$와 비교 평가하였다. 1) 칼슘고갈식이인 LoCa군에 비해 칼슘회복식이를 먹인 AdCa군과 AdFa군에서 체중증가, 사료섭취량이 유의하게 높았고, 이는 어린소재 Ca의 식이효율이 적정수준에 있다고 할 수 있다. 2) 혈청 PTH와 칼시토닌은 실험군 사이에 차이가 없었다. 3) 혈청 ALP와 오스테오칼신은 LoCa군에서 유의하게 증가하였고, AdCa와 AdFa군에서 저하되었다. 뇨의 DPD는 LoCa군에서 현저히 높은 수치를 보인 반면, AdCa와 Ad-Fa군에서 낮은 수치를 보임으로써 뼈의 형성지표와 흡수지표는 칼슘회복식이에 의해 개선되었다. 4) 대퇴골의 습윤무게, 건조무게, 체중 100g 단위당 중량이 모두 AdFa > AdCa > LoCa 순으로 높았고, 대퇴골의 회분함량과 칼슘함량도 모두 같은 순서를 보임으로써 뼈의 형성과 칼슘 축적에 AdCa군과 마찬가지로 AdFa군에서도 효과적이었음을 시사한다. 5) 대퇴골의 골밀도는 AdCa군과 AdFa군에서 LoCa군에 비해 25~26%의 유의하게 높은 수치를 보였다. 이상에서와 같이 칼슘회복식이 (AdCA와 AdFa)는 ALP, 오스테오칼신, DPD의 지표를 개선하였고, 대퇴골의 중량과 회분함량의 증가와 함께 골밀도를 향상시키는 것으로 나타났다. 따라서 어린소재 칼슘은 대조 칼슘급원으로 많이 사용되는 $CaCO_3$에 비교하여 뼈 건강에 대등한 효과를 보이므로, 칼슘 소재로서 개발될 가치가 있을 것으로 평가된다.

Keywords

References

  1. Cummings SR, Rubin SM, Black D. The future of hip fractures in the United States: number, cost and potential effects of postmenopausal estrogen. Clin Orthop Relat Res 1990; 252: 163-166
  2. Yoon GA, Hwang HJ. Effect of soy protein/animal protein ratio on calcium metabolism of the rat. Nutrition 2006; 22: 414-418 https://doi.org/10.1016/j.nut.2005.07.019
  3. Ministry of Health and Wellfare. 2005 National Nutrition Survey Report; 2006
  4. Lee SH, Chang SO. Comparison of the bioavailability of calcium from anchovy, tofu and nonfat dry milk in growing male rats. Korean J Nutr 1994; 27: 473-482
  5. Lee YS, Oh JH. Effects of bovine bone ash and calcium phosphate on calcium metabolism in postmenopausal osteoporosis model rats. Korean J Nutr 1995; 28: 434-441
  6. Siebel M, Woitge HW. Biochemical markers of bone metabolism- update 1999. Clin Lab 1999; 45: 237-256
  7. Hannon RA, Eastell R. Biochemical markers of bone turnover and fracture prediction. J Br Menopause Soc 2003; 9:10-15 https://doi.org/10.1258/136218003100322080
  8. Weisman SM. Matkovic V. Potential use of biochemical markers of bone turnover for assessing the effect of calcium supplementation and predicting fracture risk. Clin Therapeutics 2005; 27: 299-308 https://doi.org/10.1016/j.dinthera.2005.03.003
  9. Heaney RP, Dowell SD Bierman J. Absorbability and cost effectiveness in calcium supplementation. J Am Coll Nutr 2001; 20: 239-246 https://doi.org/10.1080/07315724.2001.10719038
  10. Bone Health and Osteoporosis: A surgeon General's Report. Washington DC: US Dept of Health and Human Service; 2004
  11. Austin LA., Health H. Calcitonin: physiology and pathophysiology. N Eng J Med 1981; 29: 269-278
  12. Aloia JF Cohr SH, Vaswani A, Yeh JK, Yuen K, Ellis K. Risk factors for postmenopausal osteoporosis. Am J Med 1985; 78: 95- 100
  13. Price PA, Pathermore JG, Doftos LJ. New biochemical marker for bone metabolism. J Clin Invest 1980; 66: 878-883 https://doi.org/10.1172/JCI109954
  14. Delmas PD, Hardy P, Garnero P, Dain M. Monitoring individual response to hormone replacement therapy with bone marker. Bone 2000; 26: 553-560 https://doi.org/10.1016/S8756-3282(00)00271-4
  15. Foley MK. Influence of dietary calcium and cholecalciferol on composition of plasma lipids in young pig. J Nutr 1990; 120: 45- 51 https://doi.org/10.1093/jn/120.1.45
  16. Lee JH, Moon SJ, Huh GB. Influence of phytate and low dietary calcium on calcium, phosphate and zinc metabolism by growing rats. Korean J Nutr 1993; 26: 145-155
  17. Han J, Kim E, Cheong M, Chee S, Chee K. Bioavailablity and digestibility of organic calcium source by bone health index. Korean J Nutr 2010; 43: 12-25 https://doi.org/10.4163/kjn.2010.43.1.12
  18. Moon SJ, Kim JH, Lim SK. Investigation of risk of low serum 25-hydroxyvitamin D levels in Korean menopausal women. Korean J Nutr 1996; 29: 981-990
  19. Kodama Y, Miyakoshi N, Linkhart TA, Wergedal J, Srivastava A, Beamer W, Donahue LR, Rosen C, Baylink DJ, Farley J. Effects of dietary calcium depletion and repletion on dynamic determinants of tibial bone volume in two inbred strains of mice. Bone 2000; 27: 445-452 https://doi.org/10.1016/S8756-3282(00)00340-9
  20. Shen V, Birchman R, Xu R, Lindsay R, Demster DW. Shortterm changes in histomorphometric and biochemical turnover markers and bone mineral density in estrogen-and/or dietary calcium-deficient fats. Bone 1995; 16: 149-156 https://doi.org/10.1016/8756-3282(95)80026-M
  21. Ohishi T, TakaHashi M, Kawana K Aoshima H, Hoshino H. Agerelated changes of urinary pyridinoline and deoxypyridinoline in Japanese subjects. Clin Invest Med 1993; 16: 319-325
  22. Kim YM, Yoon GA, Hwang HJ, Chi GY, Son BY, Bae SY, Kim IY, Chung JY. Effect of bluefin tuna bone on calcium metabolism of the rats. J Korean Soc Food Sci Nutr 2004; 33: 101-106 https://doi.org/10.3746/jkfn.2004.33.1.101
  23. Kato S, Mano T, Kobayashi T, Yamazaki H, Himeno Y YamamotoK, Itoh M, Harada N, Nagasaka A. A calcium-deficient diet caused decreased bone mineral density and secondary elevation of estrogen in aged male rats-Effect of manatetrenone and elcatonin. Metabolism 2002; 51: 1230-1234 https://doi.org/10.1053/meta.2002.35178

Cited by

  1. Effect of Calcium Extracted from Salted Anchovy (Engraulis japonicus) on Calcium Metabolism of the Rat vol.42, pp.2, 2013, https://doi.org/10.3746/jkfn.2013.42.2.182