DOI QR코드

DOI QR Code

대두단백질과 그의 가수분해물 및 펩타이드 분획물이 흰쥐의 지질대사 및 식욕 관련 호르몬에 미치는 영향

Effects of Soy Protein, its Hydrolysate and Peptide Fraction on Lipid Metabolism and Appetite-Related Hormones in Rats

  • 박지혜 (서울대학교 식품영양학과/생활과학연구소) ;
  • 박미나 (서울대학교 식품영양학과/생활과학연구소) ;
  • 이임식 (매일유업(주) 중앙연구소) ;
  • 김용기 (매일유업(주) 중앙연구소) ;
  • 김완식 (매일유업(주) 중앙연구소) ;
  • 이연숙 (서울대학교 식품영양학과/생활과학연구소)
  • Park, Ji-Hye (Department of Food and Nutrition & Research Institute of Human Ecology, Seoul National University) ;
  • Park, Mi-Na (Department of Food and Nutrition & Research Institute of Human Ecology, Seoul National University) ;
  • Lee, Im-Sik (R & D Center, Maeil Dairies Co. Ltd.) ;
  • Kim, Yong-Ki (R & D Center, Maeil Dairies Co. Ltd.) ;
  • Kim, Wan-Sik (R & D Center, Maeil Dairies Co. Ltd.) ;
  • Lee, Yeon-Sook (Department of Food and Nutrition & Research Institute of Human Ecology, Seoul National University)
  • 투고 : 2010.05.20
  • 심사 : 2010.08.04
  • 발행 : 2010.08.30

초록

본 연구는 흰쥐에게 대두단백질과 그 가수분해물을 고지방식이와 함께 섭취시켜 지질대사와 식욕 조절 호르몬에 미치는 영향을 검토하고자 수행하였다. 실험동물로는 4주령 수컷 Sprague-Dawley 흰쥐를 사용하였으며, 모든 실험동물에게 AIN-93 M식이를 기본으로 하여 18% 고지방과 10%의 저단백질을 첨가한 식이를 4주 동안 공급하여 동일한 실험조건을 설정한 후, 4개 군 (n = 8)으로 나누어 실험 식이를 공급하였다. 4개의 실험군은 질소급원과 수준에 따라, 10% 대두단백질군 (10% Soy Protein Isolate; 10SPI), 25% 대두단백질군 (25% Soy Protein Isolate; 25SPI), 25% 대두단백질 가수분해물군 (25% Soy Protein Hydrolysate; 25SPH), 25% 대두 macro-peptide fraction군 (25% soy macro-peptide fraction; MW $\geq$ 10,000 Da: 25SPP)으로 나누고 6주 동안 실험식이를 급여한 후 희생시켰다. 그 결과, 실험군 간에 식이섭취량은 차이를 보이지 않았으나 체중은 단백질 섭취 수준의 증가에 따라 증가하였으며, 대두단백질과 비교하여 가수분해물 및 펩타이드 분획물에 따른 유의적인 차이는 없었다. 신장과 비장조직의 무게는 저단백질 섭취군 보다 고단백질 섭취군에서 유의적으로 높았으나 25SPP군은 오히려 저단백질 섭취군 (10SPI)과 비슷하였다. 혈청지질 농도는 단백질 수준에 상관없이 25SPP에서 유의적으로 낮았다. 간의 지질함량은 저단백질 섭취군 (10SPI)에 비해 고단백질 섭취군 (25SPI, 25SPH, 25SPP)에서 유의적으로 감소하였다. 식욕조절 호르몬의 분비에 미치는 영향으로는 25SPP군이 25SPI군에 비해 인슐린은 유의적으로 높았고, 렙틴의 경우는 유의적으로 낮았다. 그러나, 그렐린은 실험군간에 유의적인 차이를 보이지 않았다. 본 연구 결과에서, 대두단백질과 비교하여 가수분해물이 혈청지질 농도 개선에 더 큰 영향을 미쳤고 특히, 분자량이 큰 펩타이드의 경우 식욕조절 관련 호르몬에 보다 긍정적인 효과를 나타냈다. 따라서, 대두단백질 고분자 펩타이드 분획물이 체내지질 함량의 감소에 기여할 수 있으며, 단백질의 종류별로 식욕조절 호르몬의 분비에 다른 영향을 줄 수 있음을 시사하였다, 그러나 고지방 식이로 유도된 비만 상태에서는 렙틴 저항이나 인슐린 저항 등이 발생하는 것을 고려할 때, 단백질 가수분해물의 식욕조절효과에 대한 면밀한 연구가 앞으로 더 진행되어야 할 것으로 사료된다.

This study was aimed to investigate whether soy protein hydrolysates had beneficial effects on serum and tissue lipid contents and appetite-related hormones as compared with intact soy protein. Four-week-old male Sprague-Dawley rats were fed AIN-93M diet containing high fat (18% w/w) with low protein (10% w/w). After four weeks, the rats were divided into four groups (n = 8/group) and fed experimental diets with different nitrogen sources and levels, respectively; 10% soy protein isolate (10SPI), 25% soy protein isolate (25SPI), 25% soy protein hydrolysates (25SPH) and 25% soy macro-peptide fractions (25SPP, MW $\geq$ 10,000) for six weeks. Weight gain was significantly higher in 25% nitrogen sources-fed groups than in 10% group (10SPI). In 25SPP, perirenal fat mass and serum total lipid were significantly lower than in other groups. As for appetite-related hormones, serum ghrelin concentration was not shown to be different among groups but leptin concentration was significantly decreased in 25SPP. It can be concluded that soy macro-peptide fractions as compared with intact soy protein may have beneficial effects on reducing fat mass and serum lipid.

키워드

참고문헌

  1. Halton TL, Hu FB. The Effects of High Protein Diets on Thermogenesis, Satiety and Weight Loss: A Critical Review. J Am Coll Nutr 2004; 23(5) : 373-385 https://doi.org/10.1080/07315724.2004.10719381
  2. Alfenas Rde C, Bressan J, de Paiva AC. Effects of protein quality on appetite and energy metabolism in normal weight subjects. Arq Bras Endocrinol Metabol 2010; 54(1) : 45-51 https://doi.org/10.1590/S0004-27302010000100008
  3. Veldhorst MA, Nieuwenhuizen AG, Hochstenbach-Waelen A, Westerterp KR, Engelen MP, Brummer RJ, Deutz NE, Westerterp- Plantenga MS. Effects of high and normal soyprotein breakfasts on satiety and subsequent energy intake, including amino acid and 'satiety' hormone responses. Eur J Nutr 2009; 48(2) : 92-100 https://doi.org/10.1007/s00394-008-0767-y
  4. Baum JA, Teng H, Erdman JW Jr, Weigel RM, Klein BP, Persky VW, Freels S, Surya P, Bakhit RM, Ramos E, Shay NF, Potter SM. Long-term intake of soy protein improves blood lipid profiles and increases mononuclear cell low-density-lipoprotein receptor messenger RNA in hypercholesterolemic, postmenopausal women. Am J Clin Nutr 1998; 68(3) : 545-551 https://doi.org/10.1093/ajcn/68.3.545
  5. Hurley C, Richard D, Deshaies Y, Jacques H. Soy protein isolate in the presence of cornstarch reduces body fat gain in rats. Can J Physiol Pharmacol 1998; 76(10-11) : 1000-1007 https://doi.org/10.1139/y98-119
  6. Velasquez MT, Bhathena SJ. Role of dietary soy protein in obesity. Int J Med Sci 2007; 4(2) : 72-82
  7. Aoyama T, Fukui K, Takamatsu K, Hashimoto Y, Yamamoto T. Soy protein isolate and its hydrolysate reduce body fat of dietary obese rats and genetically obese mice (yellow KK). Nutrition 2000; 16(5) : 349-354 https://doi.org/10.1016/S0899-9007(00)00230-6
  8. Torres N, Torre-Villalvazo I, Tovar AR. Regulation of lipid metabolism by soy protein and its implication in diseases mediated by lipid disorders. J Nutr Biochem 2006; 17(6) : 365-373 https://doi.org/10.1016/j.jnutbio.2005.11.005
  9. Noriega-López L, Tovar AR, Gonzalez-Granillo M, Hernández- Pando R, Escalante B, Santillán-Doherty P, Torres N. Pancreatic insulin secretion in rats fed a soy protein high fat diet depends on the interaction between the amino acid pattern and isoflavones. J Biol Chem 2007; 282(28) : 20657-20666 https://doi.org/10.1074/jbc.M701045200
  10. Aoyama T, Fukui K, Nakamori T, Hashimoto Y, Yamamoto T, Takamatsu K, Sugano M. Effect of soy and milk whey protein isolates and their hydrolysates on weight reduction in genetically obese mice. Biosci Biotechnol Biochem 2000; 64(12) : 2594-2600 https://doi.org/10.1271/bbb.64.2594
  11. Cho SJ, Juillerat MA, Lee CH. Cholesterol lowering mechanism of soybean protein hydrolysate. J Agric Food Chem 2007; 55 (26) : 10599-10604 https://doi.org/10.1021/jf071903f
  12. Sugano M, Goto S, Yamada Y, Yoshida K, Hashimoto Y, Matsuo T, Kimoto M. Cholesterol-lowering activity of various undigested fractions of soybean protein in rats. J Nutr 1990; 120(9) : 977-985 https://doi.org/10.1093/jn/120.9.977
  13. Reeves PG, Nielsen FH, Fahey Jr GC. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993; 123 : 1939-1951 https://doi.org/10.1093/jn/123.11.1939
  14. Frings CS, Dunn RM. A colorimetric method for determination of total serum lipids based on the sulfo-phospho-vanillin reaction. Am J Clin Pathol 1970; 53 : 89-91 https://doi.org/10.1093/ajcp/53.1.89
  15. Folch J, Less M, Stanley GHS. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957; 226 : 497-502
  16. Akahoshi A, Koba K, Enmoto R, Nishimura K, Honda Y, Minami M, Yamamoto K, Iwata T, Yamauchi Y, Tsutsumi K, Sugano M. Combined effects of dietary protein type and fat level on the body fat-reducing activity of conjugated linoleic acid (CLA) in rats. Biosci Biotechnol Biochem 2005; 69(12) : 2409-2415 https://doi.org/10.1271/bbb.69.2409
  17. Hammond KA, Janes DN. The effects of increased protein intake on kidney size and function. J Exp Biol 1998; 201(Pt 13) : 2081- 2090
  18. Murray BM, Campos SP, Schoenl M, MacGillivray MH. Effect of dietary protein intake on renal growth: possible role of insulinlike growth factor-I. J Lab Clin Med 1993; 122(6) : 677-685
  19. Gudbrandsen OA, Wergedahl H, Mork S, Liaset B, Espe M, Berge RK. Dietary soya protein concentrate enriched with isoflavones reduced fatty liver, increased hepatic fatty acid oxidation and decreased the hepatic mRNA level of VLDL receptor in obese Zucker rats. Br J Nutr 2006; 96(2) : 249-257 https://doi.org/10.1079/BJN20061837
  20. Uebanso T, Taketani Y, Fukaya M, Sato K, Takei Y, Sato T, Sa wada N, Amo K, Harada N, Arai H, Yamamoto H, Takeda E. Hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia in sucrose-fed obese rats via two pathways. Am J Physiol Endocrinol Metab 2009; 297(1) : E76-E84 https://doi.org/10.1152/ajpendo.00014.2009
  21. Liyanage R, Han KH, Watanabe S, Shimada K, Sekikawa M, Ohba K, Tokuji Y, Ohnishi M, Shibayama S, Nakamori T, Fukushima M. Potato and soy peptide diets modulate lipid metabolism in rats. Biosci Biotechnol Biochem 2008; 72(4) : 943-950 https://doi.org/10.1271/bbb.70593
  22. Hayashi S, Miyazaki Y, Yamashita J, Nakagawa M, Takizawa H. Soy protein has no hypocholesterolemic action in mice because it does not stimulate fecal steroid excretion in that species. Cell Mol Biol 1994; 40(7) : 1021-1028
  23. Claessens M, Saris WH, van Baak MA. Glucagon and insulin responses after ingestion of different amounts of intact and hydrolysed proteins. Br J Nutr 2008; 100(1) : 61-69
  24. Havel PJ. Role of adipose tissue in body-weight regulation: mechanisms regulating leptin production and energy balance. Proc Nutr Soc 2000; 59(3) : 359-371 https://doi.org/10.1017/S0029665100000410
  25. Levin N, Nelson C, Gurney A, Vandlen R, de Sauvage F. Decreased food intake does not completely account for adiposity reduction after ob protein infusion. Proc Natl Acad Sci USA 1996; 93(4) : 1726-1730 https://doi.org/10.1073/pnas.93.4.1726
  26. Maurer AD, Chen Q, McPherson C, Reimer RA. Changes in satiety hormones and expression of genes involved in glucose and lipid metabolism in rats weaned onto diets high in fibre or protein reflect susceptibility to increased fat mass in adulthood. J Physiol 2009; 587(Pt 3) : 679-691 https://doi.org/10.1113/jphysiol.2008.161844
  27. Prior LJ, Eikelis N, Armitage JA, Davern PJ, Burke SL, Montani JP, Barzel B, Head GA. Exposure to a high-fat diet alters leptin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits. Hypertension 2010; 55(4) : 862-868 https://doi.org/10.1161/HYPERTENSIONAHA.109.141119
  28. Gil-Campos M, Aguilera CM, Cañete R, Gil A. Ghrelin: a hormone regulating food intake and energy homeostasis. Br J Nutr 2006; 96(2) : 201-226 https://doi.org/10.1079/BJN20061787
  29. Dimaraki EV, Jaffe CA. Role of endogenous ghrelin in growth hormone secretion, appetite regulation and metabolism. Rev Endocr Metab Disord 2006; 7(4) : 237-249
  30. Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, Kennedy AR, Roberts GH, Morgan DG, Ghatei MA, Bloom SR. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 2000; 141 (11) : 4325-4328 https://doi.org/10.1210/en.141.11.4325
  31. Iqbal J, Kurose Y, Canny B, Clarke IJ. Effects of central infusion of ghrelin on food intake and plasma levels of growth hormone, luteinizing hormone, prolactin, and cortisol secretion in sheep. Endocrinology 2006; 147(1) : 510-519 https://doi.org/10.1210/en.2005-1048
  32. Lim CT, Kola B, Korbonits M, Grossman AB. Ghrelin's role as a major regulator of appetite and its other functions in neuroendocrinology. Prog Brain Res 2010; 182 : 189-205 https://doi.org/10.1016/S0079-6123(10)82008-4
  33. Park JY, Park MN, Choi YY, Yun SS, Chun HN, Lee YS. Effects of whey protein hydrolysates on lipid profiles and appetite-related hormones in rats fed high fat diet. J Korean Soc Food Sci Nutr 2008; 37(4) : 428-436 https://doi.org/10.3746/jkfn.2008.37.4.428

피인용 문헌

  1. Antioxidative Activity and Quality Characteristics of Almond Cookies Prepared with Job's tears(Coixlachryma-jobi L.) Chungukjang vol.27, pp.1, 2011, https://doi.org/10.9724/kfcs.2011.27.1.043
  2. Protein Hydrolysates from Agricultural Crops—Bioactivity and Potential for Functional Food Development vol.3, pp.1, 2013, https://doi.org/10.3390/agriculture3010112
  3. Effects of Human Milk Fortifier on Growth and Nutritional Status of Growing Rats Fed Infant Formula vol.40, pp.1, 2011, https://doi.org/10.3746/jkfn.2011.40.1.070
  4. Antimicrobial Activity of Extracts and Fractions of Ginkgo biloba Leaves, Seed and Outer Seedcoat vol.40, pp.1, 2011, https://doi.org/10.3746/jkfn.2011.40.1.007
  5. Effects of Screw Speed, Moisture Content, and Die Temperature on Texturization of Extruded Soy Protein Isolate vol.45, pp.8, 2016, https://doi.org/10.3746/jkfn.2016.45.8.1170
  6. Protease를 생산하는 Lactobacillus paracasei의 분리와 이를 이용한 두유 발효 최적화 vol.45, pp.5, 2010, https://doi.org/10.9721/kjfst.2013.45.5.571
  7. 항알레르기에 대한 Pediococcus inopinatus Y2 유산균 발효 두유 커드의 치료 효과 vol.29, pp.4, 2010, https://doi.org/10.5352/jls.2019.29.4.478
  8. 대두와 귀리를 첨가하여 영양을 강화시킨 기능성 시니어 혼합 두유 개발에 관한 연구 vol.33, pp.2, 2020, https://doi.org/10.9799/ksfan.2020.33.2.194