3D-QSAR Analysis on the Antitrypanosomal Activity of Phenoxy, Phenylthio or Benzyloxy Group Substituted Quinolone Analogues

Phenoxy, Phenylthio 및 Benzyloxy-기가 치환된 Quinolone 유도체들의 항트리파노소마 활성에 대한 3D-QSAR 분석

  • Myung, Pyung-Keun (Department of Pharmacy, College of Pharmacy, Chungnam National University) ;
  • Kang, Na-Na (Department of Pharmacy, College of Pharmacy, Chungnam National University) ;
  • Kim, Sang-Jin (Department of Cosmetic Science, Daejeon Health Sciences College) ;
  • Sung, Nack-Do (Department of Applied Biological Chemistry, College of Agriculture & Life Science, Chungnam National University)
  • 명평근 (충남대학교 약학대학 약학과) ;
  • 강나나 (충남대학교 약학대학 약학과) ;
  • 김상진 (대전보건대학교 화장품과학과) ;
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학과)
  • Received : 2010.04.29
  • Accepted : 2010.06.26
  • Published : 2010.08.31

Abstract

Three dimensional quantitative-structure relationships (3D-QSARs) models between structures of phenoxy, phenylthio or benzyloxy substituted quinolone analogues and their antitrypanosomal activity against Chagas disease (Trypanosoma cruzi) were derived and discussed quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. The optimized CoMFA 1 model ($q^2$=0.528 and $r^2$=0.964) showed the best statistical results. According to the optimized CoMFA 1 model, the antitrypanosomal activities were dependent on the steric (60.0%) and electrostatic (36.2%) factors of quinolone derivatives. From the contour maps, it is predicted that the activity will be increased when sterically favored groups were located in $R_4$ and $R_5$ position and sterically disfavored groups were located in $R_2$ position. Also, the positively charged groups on $R_2$ would be able to increase the antitrypanosomal activities.

Keywords

References

  1. Rodrigues, C., Batista, A. A., Aucelio, R. Q., Teixeira, L. R., Visentin, L. D. C. and Beraldo, H. : Spectral and electrochemical studies of ruthenium (II) complexes with $N^4$-methyl- 4-nitrobenzaldehyde and $N^4$-methyl-4-nitrobenzophenone thiosemicarbazone: Potential anti-trypanosomal agents. Polyhedron 27, 3061 (2008). https://doi.org/10.1016/j.poly.2008.06.002
  2. Mezencev, R., Galizzi, M., Kutschy, P. and Docampo, R. : Trypanosoma cruzi: Antiproliferative effect of indole phytoalexins on intracellular amastigotes in vitro. Exp. Parasitol. 122, 66 (2009). https://doi.org/10.1016/j.exppara.2009.01.013
  3. Demir, O. and Roitberg, A. E. : Modulation of catalytic function by differential plasticity of the active site: case study of Trypanosoma cruzi trans-sialidase and Trypanosoma rangeli sialidase. Biochem. 48, 3398 (2009). https://doi.org/10.1021/bi802230y
  4. Rodigues, P. R., Lane, J. E., Carter, C. E., Bogitsh, B. J., Singh, P. K., Zimmerman, L. J., Molenda, J. J. and Jones, M. M. : Chelating agent inhibition of Trypanosoma cruzi epimastigotes in vitro. J. Inorganic Biochem. 60, 277 (1995). https://doi.org/10.1016/0162-0134(95)00027-5
  5. Choe, Y. C., Brinen, L. S., Price, M. S., Engel, J. C., Lange, M., Grisostomi, C., Weston, S. G., Pallai, P. V., Cheng, H., Hardy, L. W., Hartsough, D. S., McMakin, M., Tilton, R. F., Baldinod, C. M. and Craika, C. S. : Development of $\alpha$-keto-based inhibitors of cruzain, a cysteine protease implicated in Chagas disease. Bioorganic Med. Chem. 13, 2141 (2005). https://doi.org/10.1016/j.bmc.2004.12.053
  6. Caetano, L. C., Braza, V., Filipin, M. D. V., Santello, F. H., Caetano, L. N., Toldo, M. P. A., Caldeira, J. C. and Jr. Prado, J. C. D. : Effects of repetitive stress during the acute phase of Trypanosoma cruzi infection on chronic Chagas disease in rats. Stress 12, 144 (2009). https://doi.org/10.1080/10253890802168648
  7. Otero, L., Vieites, M., Boiani, L., Denicola, A., Rigol, C., Opazo, L., Olea-Azar, C., Maya, J. D., Morello, A., Krauth-siegel, R. L., Piro, O. E., Castellano, E., Gonzalez, M., Gambino, D. and Cerecetto, H. : Novel antitrypanosomal agents based on palladium nitrofurylthiosemicarbazone complexes: DNA and redox metabolism as potential therapeutic targets. J. Med. Chem. 49, 3322 (2006). https://doi.org/10.1021/jm0512241
  8. Otero, L., Aguirre, G., Boiani, L., Denicola, A., Rigol, C., Olea-Azar, C., Maya, J. D., Morello, A., Gonzalez, M., Gambino, D. and Cerecetto, H. : Nitrofurylsemicarbazone rhenium and ruthenium complexes as anti-trypanosomal agents. E. J. Med. Chem. 41, 1231 (2006). https://doi.org/10.1016/j.ejmech.2006.05.012
  9. Oliveira, E. C., Stefani, M. M. A., Campos, D. E., Andrade, A. L. S. S., Silva, S. A., Rassi, A. and Luquetti, A. O. : Trypanosoma cruzi stocks isolated from acute Chagas disease patients lead to lethal murine infection. Transactions of the Royal Society of Tropical Medicine and Hygiene 91, 25 (1997). https://doi.org/10.1016/S0035-9203(97)90381-3
  10. Ricardo, P. F., Maria del carmen, S. G., Carlos, G. A., Monteo'n, V. M., Reyes, P. A. and Rosales-encina, J. L. : Humoral nitric oxide levels and antibody immune response of symptomatic and indeterminate chagas disease patients to commercial and autochthonous Trypanosoma cruzi antigen. Am. J. Trop. Med. Hyg. 58, 715 (1998). https://doi.org/10.4269/ajtmh.1998.58.715
  11. Juan, M. B., Maria, S. P., Hector, W. R., Alicia, R. F., Julio, E. E., Ricardo, E. F. and Patricia, P. O. : Treatment with benznidazole or thioridazine in the chronic phase of experimental Chagas disease improves cardiopathy. Int. J. Parasitol. 29, 733 (2007).
  12. Juan, M. B., He'ctor, W. R., Alicia, R. F. and Julio, E. E. : Trypanosoma cruzi reinfections in mice determine the severity of cardiac damage. Int. J. Parasitol. 32, 889 (2002). https://doi.org/10.1016/S0020-7519(02)00023-1
  13. Castro, J. A., Montalto de Mecca, M. and Bartel, L. C. : Toxic side effects of drugs used to treat Chagas disease (American trypanosomiasis). Hum. Exp. Toxicol. 25, 471 (2006). https://doi.org/10.1191/0960327106het653oa
  14. Silva, J. J. N., Pavanelli, W. R., Gutierrez, S. F. R., Lima, F. C. A., Silva, A. B. F., Silva, J. S. and Franco, D. W. : Complexation of the anti-Trypanosoma cruzi drug benznidazole improves solubility and efficacy. J. Med. Chem. 51, 4104 (2008). https://doi.org/10.1021/jm701306r
  15. Poli, P., Michele, A. M., Annamaria, B., Renato, A. M., Cristina, N. A., Solange, S. Carlo, R. and Tania Maria, A. D. Z. : Cytotoxic and genotoxic effects of megazol, an anti-Chagas disease drug, assessed by different short-term tests. Biochem. 64, 1617 (2002).
  16. Oliver, H., Michael, H. G., Christophe, L. M. J. V. and Frederick, S. B. : The protein farnesyltransferase inhibitor tipifarnib as a new lead for the development of drugs against chagas disease. J. Med. Chem. 48, 5415 (2005). https://doi.org/10.1021/jm050441z
  17. James, M. K., Christophe, L. M. J. V., Mandana, K., Galina, I. L., Michael, H. G. and Frederick, S. B. : Rational modification of a candidate cancer drug for use against chagas disease. J. Med. Chem. 52, 1639 (2009). https://doi.org/10.1021/jm801313t
  18. Shimoda, K. : Mechanisms of quinolone phototoxicity. Toxicology Letters 102-103, 369 (1998). https://doi.org/10.1016/S0378-4274(98)00234-3
  19. Lesher, G. Y., Froelich, E. J., Gruet, M. D., Bailey, J. H. and Brundage, R. P. : 1,8-Naphthyridine derivatives. A new class of chemotherapeutic agents. J. Med. Chem. 5, 1063 (1962). https://doi.org/10.1021/jm01240a021
  20. Herna'ndez-Arteseros, J. A., Barbosa., J., Compano, R. and Prat, M. D. : Analysis of quinolone residues in edible animal products. J. Chromatography A. 945, 1 (2002). https://doi.org/10.1016/S0021-9673(01)01505-9
  21. Zafra-Gmez, A., Garballo, A., Ballesteros, O., Navaln, A. and Garca-Ayuso, L. E. : Simultaneous determination of quinolone antibacterials in bovine milk by liquid chromatography - mass spectrometry. Biomed. Chromatogr. 22, 1186 (2008). https://doi.org/10.1002/bmc.1041
  22. Iztok, T. : The interactions of metal ions with quinolone antibacterial agents. Coordination Chem. 232, 27 (2002). https://doi.org/10.1016/S0010-8545(02)00027-9
  23. Xiang, M., Weicheng, Z. and Reto, B. : Synthesis, in vitro antitrypanosomal and antibacterial activity of phenoxy, phenylthio or benzyloxy substituted quinolones. Bio. Med. Chem. 19, 986 (2009). https://doi.org/10.1016/j.bmcl.2008.11.078
  24. Belal, F., Al-Majed, A. A. and Al-Obaid, A. M. : Methods of analysis of 4-quinolone antibacterials. Talanta 50, 765 (1999). https://doi.org/10.1016/S0039-9140(99)00139-3
  25. Appelbaum, P. C. and Hunter, P. A. : The fluoroquinolone antibacterials: past, present and future perspectives. I. J. Antimicrobial Agents 16, 5 (2000). https://doi.org/10.1016/S0924-8579(00)00192-8
  26. Cramer, R. D. III, Patterson, D. E. and Bunce, J. D. : Comparative molecular field analysis (CoMFA), 1. Effect of shape on the binding of steroid to carrier proteins. J. Am. Chem. Soc. 110, 5959 (1988). https://doi.org/10.1021/ja00226a005
  27. Klebe, G., Abraham, U. and Mietzner, T. : Molecular similarity indexes in a comparativeanalysis (comsia) of drug molecules to correlate and predict their biological-activity. J. Med. Chem. 37, 4130 (1994). https://doi.org/10.1021/jm00050a010
  28. Soung, M. K., Lee, Y. J. and Sung, N. D. : 3D-QSARs of herbicidal 2-N-phenylisoindolin-1-one analogues as a new class of potent inhibitors of protox. Bull. Kor. Chem. Soc. 30, 613 (2009). https://doi.org/10.5012/bkcs.2009.30.3.613
  29. Vasan, A. and Komaragiri, S. R. : Comparative analysis of simulated annealing, simulated quenching and genetic algorithms for optimal reservoir operation. Applied Soft Computing 9, 274 (2009) https://doi.org/10.1016/j.asoc.2007.09.002
  30. Wold, S., Johansson, E. and Cocchi, M. : PLS-partial least squares projections to latent structures, in 3D-QSAR in Drug Design: Theory, Methods and Applications (ed. H. Kubinyi), ESCOM, Leiden, pp. 523-550 (1993).