DOI QR코드

DOI QR Code

랫드의 두개골 결손부에서 돼지 해면질골이 골재생에 미치는 영향

Effect of Porcine Cancellous Bones on Regeneration in Rats with Calvarial Defect

  • Yoo, Kyeong-Hoon (College of Veterinary Medicine, Chonnam National University) ;
  • Kim, Se-Eun (College of Veterinary Medicine, Chonnam National University) ;
  • Shim, Kyung-Mi (Department of Radiology, Nambu University) ;
  • Park, Hyun-Jeong (College of Veterinary Medicine, Jeju National University) ;
  • Choi, Seok-Hwa (College of Veterinary Medicine, Chungbuk National University) ;
  • Kang, Seong-Soo (College of Veterinary Medicine, Chonnam National University)
  • 투고 : 2010.04.17
  • 심사 : 2010.08.25
  • 발행 : 2010.08.30

초록

본 연구의 목적은 랫드의 두개결손부 모델에서 돼지 해면질골을 지지체로 사용했을 때의 효과를 평가해보고자 하였다. 임계결손부의 형성은 30마리의 수컷 Sprague-Dawley 랫드에서 실시하였으며 동물들은 임계결손군(CD group, n=10), 베타 삼인산칼슘군(BT group, n=10) 및 돼지 해면질골군(PCB group, n=10)으로 나누었다. 각각의 결손부위는 피브린 글루와 혼합시킨 베타 삼인산칼슘 또는 돼지 해면질골로 채워졌으며 CD군은 결손부위에 이식재를 이식하지 않았다. 모든 랫드들은 골이식 수술 8주 후에 희생되었으며 희생 후 육안검사, 단순 방사선촬영, micro-CT 촬영 및 조직검사를 통해 골형성 정도를 평가하였다. 결과에서 골결손부의 치유는 CD군에서 가장 낮았으며 PCB군에서는 유의성 있는 새로운 골형성을 확인할 수 있었다. 또한 방사선촬영 결과, 조직학적 평가 및 micro CT 촬영 결과에서 골이식 시 돼지 해면질골이 베타 삼인산칼슘보다 새로운 골형성에 있어 더욱 효과적임을 관찰할 수 있었다.

The purpose of this study was to evaluate the effect of porcine cancellous bone as a scaffold in a rat calvarial defect model. Critical-sized defects were created in 30 male Sprague-Dawley rats. The animals were divided into critical defect (CD, n=10), $\beta$-tricalcium phosphate (TCP) graft (BT, n=10) and porcine cancellous bone graft (PCB, n=10) groups. Each defect was filled with $\beta$-TCP mixed with fibrin glue or porcine cancellous bone powder mixed with fibrin glue. In the CD group, the defect was left empty. All rats were sacrificed at 8 weeks after bone graft surgery, and bone formation was evaluated by gross observation, plain radiography, micro-computed tomography scanning and histological evaluation. Repair of bone defect was the least in the CD group, and significant new bone formation was observed in the PCB group. Grafting of porcine cancellous bone was more efficient for regenerating new bone than grafting $\beta$-TCP.

키워드

참고문헌

  1. Aichelmann-reidy, M. E. and R. A. Yukna. 1998. Bone replacement grafts: the bone substitutes. Dent. Clin. North Am. 42, 491-503.
  2. Arrington, E. D., W. J. Smith, H. G. Chambers, A. L. Bucknel, and N. A. Davino. 1996. Complications of iliac crest bone harvesting. Clin. Orthop. 329, 300-309. https://doi.org/10.1097/00003086-199608000-00037
  3. Betz, R. R. 2002. Limitation of autograft and allograft: New synthetic solutions. Orthopedics 25, 561-570.
  4. Bhaskar, S. N., J. M. Brady, L. Getter, M. F. Grower, and T. Driskell. 1971. Biodegradable ceramic implants in bone electron and light microscopic analysis. Oral Surg. Oral Med. Oral Pathol. 32, 336-346. https://doi.org/10.1016/0030-4220(71)90238-6
  5. Bucholz, R. W., A. Carlton, and R. Holmes. 1987. Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop. Clin. North Am. 18, 323-334.
  6. Costantino, P. D. and C. D. Friedman. 1994. Synthetic bone graft substitutes. Otolaryngol. Clin. North Am. 27, 1037-1075.
  7. Cypher, T. J. and J. P. Grossman. 1996. Biological principles of bone graft healing. J. Foot Ankle Surg. 35, 413-417. https://doi.org/10.1016/S1067-2516(96)80061-5
  8. Eppley, B. L., W. S. Pietrzak, and M. W. Blanton. 2005. Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. J. Craniofac. Surg. 16, 981-989. https://doi.org/10.1097/01.scs.0000179662.38172.dd
  9. Goulet, J. A., L. E. Senunas, G. L. DeSilva, and M. L. Greenfeild. 1997. Autogenous iliac crest bone graft: Complications and functional assessment. Clin. Orthop. Rel. Res. 339, 76-81. https://doi.org/10.1097/00003086-199706000-00011
  10. Hollinger, J. O., J. Brekke, E. Gruskin, and D. Lee. 1996. Role of bone substitutes. Clin. Orthop. 324, 55-65. https://doi.org/10.1097/00003086-199603000-00008
  11. Kim, S. H., J. W. Shin, S. A. Park, Y. K. Kim, M. S. Park, J. M. Mok, W. I. Yang, and J. W. Lee. 2004. Chemical, structural properties, and osteoconductive effectiveness of bone block derived from porcine cancellous bone. J. Biomed.Mater. Res. B Appl. Biomater. 68, 69-74.
  12. Kishimoto, M., S. I. Kanemaru, M. Yamashita, T. Nakamura, Y. Tamura, H. Tamaki, K. Omori, and J. Ito. 2006. Cranial bone regeneration using a composite scaffold of Beta-tricalcium phosphate, collagen, and autologous bone fragments.Laryngoscope 116, 212-216. https://doi.org/10.1097/01.mlg.0000191468.45536.3f
  13. Martin, R. B., M. W. Chapman, N. A. Sharkey, S. L. Zissimos, B. Bay, and E. C. Shors. 1993. Bone ingrowth and mechanical properties of coralline hydroxyapatite 1 yr after implantation. Biomaterials 14, 341-348. https://doi.org/10.1016/0142-9612(93)90052-4
  14. Millis, L. D. and A. S. Martinez. 2003. Textbook of Small Animal Surgery. pp. 1875-1891, 3rd eds., Saunders. Philadelphia.
  15. Mundy, G. R. 1993. Vision for the future in osteoporosis research. Osteoporosis Int. 2, 29-34.
  16. Prokic, B. 1990. Comparative clinical study of porous hydroxyapatite and decalcified freeze-dried bone in human periodontal defects. J. Periodontol. 61, 399-404. https://doi.org/10.1902/jop.1990.61.7.399
  17. Schmitz, J. P., Z. Schwartz, J. O. Hollinger, and B. D. Boyan. 1990. Characterization of rat calvarial nonunion defects.Acta. Anat. 138, 185-192. https://doi.org/10.1159/000146937
  18. Sogal, A. and A. J. Tofe. 1999. Risk assessment of bovine spongiform encephalopathy transmission through bone graft material derived from bovine bone for dental applications. J. Periodontol. 70, 1053-1063. https://doi.org/10.1902/jop.1999.70.9.1053
  19. Wagner, J. R. 1991. A $3\frac{1}{2}$-year clinical evaluation of resorbable hydroxyapatite $OsteoGen^{{\circledR}}$ (HA Resorb) used for sinus lift augmentations in conjunction with the insertion of endosseous implants. J. Oral Implantol. 17, 152-164.
  20. Wiltfang, J., K. A. Schlegel, S. Schultze-Mosgau, E. Nkenke, R. Zimmermann, and P. Kessler. 2003. Sinus floor augmentation with beta-tricalciumphosphate (beta-TCP): Does platelet-rich plasma promote its osseous integration and degradation? Clin. Oral Implants. Res. 14, 213-218. https://doi.org/10.1034/j.1600-0501.2003.140212.x

피인용 문헌

  1. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction vol.104, pp.7, 2016, https://doi.org/10.1002/jbm.a.35711
  2. EffeCt of tricalcium phosphate (TCP) as a scaffold during bone grafting using cultured periosteum-derived cells in a rat calvarial defect model vol.5, pp.1, 2011, https://doi.org/10.7742/jksr.2011.5.1.011
  3. Process development of a virally-safe dental xenograft material from porcine bones vol.52, pp.2, 2016, https://doi.org/10.7845/kjm.2016.6019
  4. Bone Formation Effect of the RGD-bioconjugated Mussel Adhesive Proteins Composite Hydroxypropyl Methylcellulose Hydrogel Based Nano Hydroxyapatite and Collagen Membrane in Rabbits vol.7, pp.2, 2015, https://doi.org/10.15433/ksmb.2015.7.2.058