DOI QR코드

DOI QR Code

Association Study between CCL-2 and CCL-5 Polymorphisms and Clinicopathological Characteristics of Childhood IgA Nephropathy

소아 IgA 신병증 환자에서 임상병리 양상과 CCL-2 및 CCL-5 유전자 다형성의 연관성 연구

  • Hahn, Won-Ho (Department of Pediatrics, School of Medicine East West Kidney Diseases Research Institute Kyung Hee University) ;
  • Suh, Jin-Soon (Department of Pediatrics, School of Medicine East West Kidney Diseases Research Institute Kyung Hee University) ;
  • Cho, Byoung-Soo (Department of Pediatrics, School of Medicine East West Kidney Diseases Research Institute Kyung Hee University)
  • 한원호 (경희대학교 의과대학 소아과학교실, 경희대학교 동서신장병 연구소) ;
  • 서진순 (경희대학교 의과대학 소아과학교실, 경희대학교 동서신장병 연구소) ;
  • 조병수 (경희대학교 의과대학 소아과학교실, 경희대학교 동서신장병 연구소)
  • Received : 2010.03.27
  • Accepted : 2010.04.21
  • Published : 2010.04.30

Abstract

Purpose : Previous studies have suggested that Chemokine (C-C motif) ligand-2 (CCL-2; also known as MCP-1) and CCL-5 (also known as RANTES) are possibly associated with the pathogenesis of various inflammatory and non-inflammatory renal diseases. The present study was conducted to investigate association of polymorphisms of CCL-2 and CCL-5 genes with childhood IgA nephropathy (IgAN). Methods : The authors analyzed six single nucleotide polymorphisms (SNPs) of CCL-2 and CCL-5 in 196 pediatric IgAN patients and in 285 healthy controls. We compared variations in SNPs between two several sets of IgAN subgroups, allocated by presence of proteinuria (>4 mg/$m^2$/hour), podocyte foot process effacement, and pathologically advanced disease markers, such as interstitial fibrosis, tubular atrophy, or global sclerosis. Results : Genotypic data of IgAN patients and controls showed no significant SNP frequency difference in both of of CCL-2 and CCL-5. Even though two linkage disequilibrium blocks were formed, there was no significance in the haplotype analysis. In the patient subgroup analysis, no SNP of CCL-2 and CCL-5 was found to be associated with the presence of proteinuria, podocyte foot process effacement, and pathologically advanced disease markers. Conclusion : Our data indicate that no association exists between CCL-2 and CCL-5 SNPs and childhood IgAN susceptibility, and presence of proteinuria, podocyte foot process effacement, and pathologic progression of IgAN.

목 적 : 최근 Chemokine (C-C motif) ligand-2 (CCL-2; also known as MCP-1)와 CCL-5 (also known as RANTES)가 다양한 염증성 및 비염증성 신질환과 연관성을 보인다는 연구결과들이 보고되고 있다. 이에 본 저자들은 CCL-2 및 CCL-5 유전자의 단일염기다형성(single nucleotide polymorphism; SNP)가 소아 IgA 신병증의 발생 및 임상양상과 어떠한 연관성을 보이는지 알아보기 위하여 본 연구를 시행하였다. 방 법 : 경희의료원 소아청소년과에서 학교 검뇨상 이상소견을 보여 전원된 환아 중 신생검을 통해 IgA 신병증으로 확진된 196명의 소아환아와 285명의 건강한 대조군을 대상으로 geneotyping을 통해 6 개의 SNP 대립 유전자 빈도를 조사하여 분석하였다. 또한, 단백뇨(>4 mg/$m^2$/hour), 병리 소견 상 족세포의 족돌기 융합과 병리학적 진행성 병변의 유무에 따라 환자군을 다시 세 개의 하위그룹으로 세분화하여 비교하였다. 결 과 : IgA 신병증 환아 및 대조군의 SNP 대립 유전자 빈도를 분석하였을 때, CCL-2 및 CCL-5 유전자 모두에서 질환의 발생과 연관성을 보이는 SNP는 발견되지 않았다. 두 개의 linkage disequilibrium block이 형성되었으나 하플로타입 분석에서는 유의한 하플로타입을 찾을 수 없었다. 또한, 환자의 하위그룹을 비교하였을 때에도 단백뇨, 병리 소견 상 족세포의 족돌기 융합과 병리학적 진행성 병변과 연관성을 보이는 SNP는 발견되지 않았다. 결 론 : 한국 소아 환자를 대상으로 시행한 본 연구에서 CCL-2 및 CCL-5유전자 다형성과 IgA 신병증의 임상병리 양상 간에 유의한 연관성은 없었다.

Keywords

References

  1. Cheng J, Diaz Encarnacion MM, Warner GM, Gray CE, Nath KA, Grande JP. TGF-beta1 stimulates monocyte chemoattractant protein-1 expression in mesangial cells through a phosphodiesterase isoenzyme 4-dependent process. Am J Physiol Cell Physiol 2005;289:C959-70. https://doi.org/10.1152/ajpcell.00153.2005
  2. Lloyd CM, Minto AW, Dorf ME, Proudfoot A, Wells TN, Salant DJ, et al. RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J Exp Med 1997;185: 1371-80. https://doi.org/10.1084/jem.185.7.1371
  3. Stangou M, Alexopoulos E, Papagianni A, Pantzaki A, Bantis C, Dovas S, et al. Urinary levels of epidermal growth factor, interleukin-6 and monocyte chemoattractant protein- 1 may act as predictor markers of renal function outcome in immunoglobulin A nephropathy. Nephrology (Carlton) 2009; 14:613-20. https://doi.org/10.1111/j.1440-1797.2008.01051.x
  4. Wagrowska-Danilewicz M, Danilewicz M, Stasikowska O. CC chemokines and chemokine receptors in IgA nephropathy (IgAN) and in non-IgA mesangial proliferative glomerulonephritis (MesProGN). the immunohistochemical comparative study. Pol J Pathol 2005;56:121-6.
  5. Wada T, Yokoyama H, Furuichi K, Kobayashi KI, Harada K, Naruto M, et al. Intervention of crescentic glomerulonephritis by antibodies to monocyte chemotactic and activating factor (MCAF/MCP-1). FASEB J 1996;10:1418-25. https://doi.org/10.1096/fasebj.10.12.8903512
  6. Wada T, Furuichi K, Sakai N, Iwata Y, Yoshimoto K, Shimizu M, et al. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int 2000;58:1492-9. https://doi.org/10.1046/j.1523-1755.2000.00311.x
  7. Tian S, Li J, Wang L, Liu T, Liu H, Cheng G, et al. Urinary levels of RANTES and MCSF are predictors of lupus nephritis flare. Inflamm Res 2007;56:304-10. https://doi.org/10.1007/s00011-007-6147-x
  8. Furuichi K, Wada T, Sakai N, Iwata Y, Yoshimoto K, Shimizu M, et al. Distinct expression of CCR1 and CCR5 in glomerular and interstitial lesions of human glomerular diseases. Am J Nephrol 2000;20:291-9. https://doi.org/10.1159/000013603
  9. Song E, Zou H, Yao Y, Proudfoot A, Antus B, Liu S, et al. Early application of Met- RANTES ameliorates chronic allograft nephropathy. Kidney Int 2002;61:676-85. https://doi.org/10.1046/j.1523-1755.2002.00148.x
  10. Chan RW, Lai FM, Li EK, Tam LS, Chow KM, Li PK, et al. Messenger RNA expression of RANTES in the urinary sediment of patients with lupus nephritis. Nephrology (Carlton) 2006;11:219-25. https://doi.org/10.1111/j.1440-1797.2006.00565.x
  11. Vielhauer V, Berning E, Eis V, Kretzler M, Segerer S, Strutz F, et al. CCR1 blockade reduces interstitial inflammation and fibrosis in mice with glomerulosclerosis and nephrotic syndrome. Kidney Int 2004;66:2264-78. https://doi.org/10.1111/j.1523-1755.2004.66038.x
  12. Wolf G, Ziyadeh FN, Thaiss F, Tomaszewski J, Caron RJ, Wenzel U, et al. Angiotensin II stimulates expression of the chemokine RANTES in rat glomerular endothelial cells. Role of the angiotensin type 2 receptor. J Clin Invest 1997;100:1047-58. https://doi.org/10.1172/JCI119615
  13. Ahluwalia TS, Khullar M, Ahuja M, Kohli HS, Bhansali A, Mohan V, et al. Common variants of inflammatory cytokine genes are associated with risk of nephropathy in type 2 diabetes among Asian Indians. PLoS One 2009;4:e5168. https://doi.org/10.1371/journal.pone.0005168
  14. Aguilar F, Gonzalez-Escribano MF, Sanchez-Roman J, Nunez-Roldan A. MCP-1 promoter polymorphism in Spanish patients with systemic lupus erythematosus. Tissue Antigens 2001;58:335-8. https://doi.org/10.1034/j.1399-0039.2001.580508.x
  15. Moon JY, Jeong L, Lee S, Jeong K, Lee T, Ihm CG, et al. Association of polymorphisms in monocyte chemoattractant protein-1 promoter with diabetic kidney failure in Korean patients with type 2 diabetes mellitus J Korean Med Sci 2007;22:810-4. https://doi.org/10.3346/jkms.2007.22.5.810
  16. Joo KW, Hwang YH, Kim JH, Oh KH, Kim H, Shin HD, et al. MCP-1 and RANTES polymorphisms in Korean diabetic endstage renal disease. J Korean Med Sci 2007;22:611-5. https://doi.org/10.3346/jkms.2007.22.4.611
  17. Prasad P, Tiwari AK, Kumar KM, Ammini AC, Gupta A, Gupta R, et al. Association of TGFbeta1, TNFalpha, CCR2 and CCR5 gene polymorphisms in type-2 diabetes and renal insufficiency among Asian Indians. BMC Med Genet 2007;8:20.
  18. Brown KS, Nackos E, Morthala S, Jensen LE, Whitehead AS, Von Feldt JM. Monocyte chemoattractant protein-1: plasma concentrations and A(-2518)G promoter polymorphism of its gene in systemic lupus erythematosus. J Rheumatol 2007;34:740-6.
  19. Tucci M, Barnes EV, Sobel ES, Croker BP, Segal MS, Reeves WH, et al. Strong association of a functional polymorphism in the monocyte chemoattractant protein 1 promoter gene with lupus nephritis. Arthritis Rheum 2004;50:1842-9. https://doi.org/10.1002/art.20266
  20. Mori H, Kaneko Y, Narita I, Goto S, Saito N, Kondo D, et al. Monocyte chemoattractant protein-1 A-2518G gene polymorphism and renal survival of Japanese patients with immunoglobulin A nephropathy. Clin Exp Nephrol 2005;9:297-303. https://doi.org/10.1007/s10157-005-0375-6
  21. Mokubo A, Tanaka Y, Nakajima K, Watada H, Hirose T, Kawasumi M, et al. Chemotactic cytokine receptor 5 (CCR5) gene promoter polymorphism (59029A/G) is associated with diabetic nephropathy in Japanese patients with type 2 diabetes: a 10-year longitudinal study. Diabetes Res Clin Pract 2006;73:89-94. https://doi.org/10.1016/j.diabres.2005.12.006
  22. Ye DQ, Yang SG, Li XP, Hu YS, Yin J, Zhang GQ, et al. Polymorphisms in the promoter region of RANTES in Han Chinese and their relationship with systemic lupus erythematosus. Arch Dermatol Res 2005;297:108-13. https://doi.org/10.1007/s00403-005-0581-9
  23. Nakajima K, Tanaka Y, Nomiyama T, Ogihara T, Ikeda F, Kanno R, et al. RANTES promoter genotype is associated with diabetic nephropathy in type 2 diabetic subjects. Diabetes Care 2003;26:892-8. https://doi.org/10.2337/diacare.26.3.892
  24. Dantas M, Romao EA, Costa RS, dos Reis MA, Vieira Neto OM, Ribeiro RA, et al. Urinary excretion of monocyte chemoattractant protein-1: a biomarker of active tubulointerstitial damage in patients with glomerulopathies. Kidney Blood Press Res 2007;30:306-13. https://doi.org/10.1159/000107806
  25. Tesch GH. MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am J Physiol Renal Physiol 2008;294:F697-701. https://doi.org/10.1152/ajprenal.00016.2008
  26. Yao TC, Kuo ML, See LC, Ou LS, Lee WI, Chan CK, et al. RANTES and monocyte chemoattractant protein 1 as sensitive markers of disease activity in patients with juvenile rheumatoid arthritis: a six-year longitudinal study. Arthritis Rheum 2006; 54:2585-93. https://doi.org/10.1002/art.21962
  27. Das L, Brunner HI. Biomarkers for renal disease in childhood. Curr Rheumatol Rep 2009;11:218-25. https://doi.org/10.1007/s11926-009-0030-4
  28. Steinmetz OM, Panzer U, Harendza S, Mertens PR, Ostendorf T, Floege J, et al. No association of the -2518 MCP-1 A/G promoter polymorphism with incidence and clinical course of IgA nephropathy. Nephrol Dial Transplant 2004;19:596-601. https://doi.org/10.1093/ndt/gfg577
  29. Lee HS, Lee MS, Lee SM, Lee SY, Lee ES, Lee EY, et al. Histological grading of IgA nephropathy predicting renal outcome: revisiting H. S. Lee's glomerular grading system. Nephrol Dial Transplant 2005;20: 342-8. https://doi.org/10.1093/ndt/gfh633
  30. Sole X, Guino E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics 2006;22: 1928-9. https://doi.org/10.1093/bioinformatics/btl268
  31. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, et al. The structure of haplotype blocks in the human genome. Science 2002;296:2225-9. https://doi.org/10.1126/science.1069424
  32. Kim HL, Lee DS, Yang SH, Lim CS, Chung JH, Kim S, et al. The polymorphism of monocyte chemoattractant protein-1 is associated with the renal disease of SLE. Am J Kidney Dis 2002;40:1146-52. https://doi.org/10.1053/ajkd.2002.36858
  33. Malafronte P, Vieira JM, Jr., Pereira AC, Krieger JE, Barros RT, Woronik V. Association of the MCP-1 -2518 A/G Polymorphism and No Association of Its Receptor CCR2 -64 V/I Polymorphism with Lupus Nephritis. J Rheumatol 2010;37:776-8. https://doi.org/10.3899/jrheum.090681
  34. Mlynarski WM, Placha GP, Wolkow PP, Bochenski JP, Warram JH, Krolewski AS. Risk of diabetic nephropathy in type 1 diabetes is associated with functional polymorphisms in RANTES receptor gene (CCR5): a sexspecific effect. Diabetes 2005;54:3331-5. https://doi.org/10.2337/diabetes.54.11.3331
  35. Nakashima H, Akahoshi M, Shimizu S, Inoue Y, Miyake K, Ninomiya I, et al. Absence of association between the MCP-1 gene polymorphism and histological phenotype of lupus nephritis. Lupus 2004;13:165-7. https://doi.org/10.1191/0961203304lu523oa
  36. Brabcova I, Petrasek J, Hribova P, Hyklova K, Bartosova K, Lacha J, et al. Genetic variability of major inflammatory mediators has no impact on the outcome of kidney transplantation. Transplantation 2007;84: 1037-44. https://doi.org/10.1097/01.tp.0000285295.39275.3b
  37. Maruyama K, Yoshida M, Nishio H, Shirakawa T, Kawamura T, Tanaka R, et al. Polymorphisms of renin-angiotensin system genes in childhood IgA nephropathy. Pediatr Nephrol 2001;16:350-5. https://doi.org/10.1007/s004670000555
  38. Nakanishi K, Sako M, Yata N, Aoyagi N, Nozu K, Tanaka R, et al. A-20C angiotensinogen gene polymorphism and proteinuria in childhood IgA nephropathy. Pediatr Nephrol 2004;19:144-7. https://doi.org/10.1007/s00467-003-1350-7

Cited by

  1. 용안육(龍眼肉) 물추출물이 대식세포의 염증반응과 Cytokine에 미치는 영향 vol.27, pp.2, 2010, https://doi.org/10.15204/jkobgy.2014.27.2.001