DOI QR코드

DOI QR Code

THE EFFECT OF THE REMOVAL OF CHONDROITIN SULFATE ON BOND STRENGTH OF DENTIN ADHESIVES AND COLLAGEN ARCHITECTURE

비교원성 단백질이 상아질 접착제의 결합강도와 교원질의 형태에 미치는 영향

  • Kim, Jong-Ryul (Department of Conservative Dentistry, School of Dentistry, Kyung Hee University) ;
  • Park, Sang-Jin (Department of Conservative Dentistry, School of Dentistry, Kyung Hee University) ;
  • Choi, Gi-Woon (Department of Conservative Dentistry, School of Dentistry, Kyung Hee University) ;
  • Choi, Kyoung-Kyu (Department of Conservative Dentistry, School of Dentistry, Kyung Hee University)
  • 김종률 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 박상진 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 최기운 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 최경규 (경희대학교 대학원 치의학과 치과보존학교실)
  • Received : 2010.04.15
  • Accepted : 2010.05.01
  • Published : 2010.05.31

Abstract

Proteoglycan is highly hydrophilic and negatively charged which enable them attract the water. The objective of study was to investigate the effects of Proteoglycan on microtensile bond strength of dentin adhesives and on architecture of dentin collagen matrix of acid etched dentin by removing the chondroitin sulphate attached on Proteoglycan. A flat dentin surface in mid-coronal portion of tooth was prepared. After acid etching, half of the specimens were immersed in 0.1 U/mL chondroitinase ABC (C-ABC) for 48 h at $37^{\circ}C$, while the other half were stored in distilled water. Specimens were bonded with the dentin adhesive using three different bonding techniques (wet, dry and re-wet) followed by microtensile bond strength test. SEM examination was done with debonded specimen, resin-dentin interface and acid-etched dentin surface with/without C-ABC treatment. For the subgroups using wet-bonding or dry-bonding technique, microtensile bond strength showed no significant difference after C-ABC treatment (p > 0.05). Nevertheless, the subgroup using rewetting technique after air dry in the Single Bond 2 group demonstrated a significant decrease of microtensile bond strength after C-ABC treatment. Collagen architecture is loosely packed and some fibrils are aggregated together and relatively collapsed compared with normal acid-etched wet dentin after C-ABC treatment. Further studies are necessary for the contribution to the collagen architecture of noncollagenous protein under the various clinical situations and several dentin conditioners and are also needed about long-term effect on bond strength of dentin adhesive.

본 연구는 상아질의 비교원성 단백질을 chondroitinase ABC (C-ABC)를 이용하여 제거함으로써 비교원성 단백질의 제거가 상아질 접착제의 미세인장결합강도와 교원질망의 형태에 미치는 영향을 상아질의 다양한 습윤상태에 따라 평가하고자 시행하였다. 비교원성 단백질의 상아질접착제의 미세인장강도에 대한 영향을 평가하기 위해 제 3대구치의 상아질을 노출시키고, 두 군으로 나누고 한 군은 C-ABC, 다른 군은 증류수를 $37^{\circ}C$에서 48시간 동안 적용한 후, 상아질의 습윤상태(wet, dry 및 re-wet)와 상아질 접착제(Single Bond 2, One Step Plus)를 다르게 이용하여 복합레진을 수복하였다. 24시간 후 가로 1 mm, 세로 1mm의 시편을 제작하고 미세인장강도를 측정하였다. 상아질 교원질의 형태변화를 관찰하기 위하여 상아질 시편에 산부식을 시행하고 C-ABC 적용 후, 시편을 제작하였고 미세인장강도 측정후 파괴된 접착면의 파괴양상과 각 접착제의 접착계면 관찰을 위하여 FE-SEM 관찰하였다. C-ABC 처리여부와 관계없이 습윤한 상아질면에 접착한 군은 모든 접착제에서 통계학적으로 유의성있는 미세인장결합강도의 차이를 나타나지 않았다(p > 0.05). C-ABC를 적용하였을 경우, Single Bond 2에서는 재수화한 상아질면에 접착한 군이 습윤한 상아질면에 접착한 군에 비해 미세인장결합강도가 감소하였다(p < 0.05). FE-SEM 관찰결과, C-ABC를 적용후에는 접착성 파괴가 주로 일어났으며, 교원질 섬유간 거리가 증가하였으며 부분적으로 교원질 섬유들간에 응집된 양상이 관찰되었다.

Keywords

References

  1. Van Meerbeek B, De Munck J, Yoshida Y, Inoue S, Vargas M, Vijay P, Van Landuyt K, Lambrechts P, Vanherle G. Buonocore memorial lecture. Adhesion to enamel and dentin: current status and future challenges. Oper Dent 28(3):215-235, 2003.
  2. Nakabayashi N, Kojima K, Masuhara E. The promotion of adhesion by the infiltration of monomers into tooth substrates. J Biomed Mater Res 16(3):265-273, 1982. https://doi.org/10.1002/jbm.820160307
  3. Wang Y, Spencer P. Quantifying adhesive penetration in adhesive/dentin interface using confocal Raman microspectroscopy. J Biomed Mater Res 59(1):46-55, 2002. https://doi.org/10.1002/jbm.1215
  4. Sano H, Takatsu T, Ciucchi B, Horner JA, Matthews WG, Pashley DH. Nanoleakage: leakage within the hybrid layer. Oper Dent 20(1):18-25, 1995.
  5. Jang JH, Lee KW, Kim HY, Lee IB, Cho BH, Son HH. Quatitative comparision of permeability in the adhesive interface of four adhesive systems. J Kor Acad Con Dent 34(1):55-60, 2009.
  6. Son SJ, Jang JH, Kang SH, Yoo HM, Cho BH, Son HY. The nanoleakage patterns of experimental hydrophobic adhesives after load cycling. J Kor Acad Cons Dent 33(1):9-19, 2008. https://doi.org/10.5395/JKACD.2008.33.1.009
  7. Perdigao J, Van Meerbeek B, Lopes MM, Ambrose WW. The effect of a re-wetting agent on dentin bonding. Dent Mater 15(4):282-295, 1999. https://doi.org/10.1016/S0109-5641(99)00049-4
  8. Gwinnett AJ. Dentin bond strength after air drying and rewetting. Am J Dent 7(3):144-148, 1994.
  9. Carvalho RM, Yoshiyama M, Pashley EL, Pashley DH. In vitro study on the dimensional changes of human dentine after demineralization. Arch Oral Biol 41(4):369-377, 1996. https://doi.org/10.1016/0003-9969(95)00115-8
  10. Pashley DH, Agee KA, Nakajima M, Tay FR, Carvalho RM, Terada RS, Harmon FJ, Lee WK, Rueggeberg FA. Solvent-induced dimensional changes in EDTA-demineralized dentin matrix. J Biomed Mater Res 56(2):273-281, 2001. https://doi.org/10.1002/1097-4636(200108)56:2<273::AID-JBM1095>3.0.CO;2-A
  11. Agee KA, Becker TD, Joyce AP, Rueggeberg FA, Borke JL, Waller JL, Tay FR, Pashley DH. Net expansion of dried demineralized dentin matrix produced by monomer/alcohol saturation and solvent evaporation. J Biomed Mater Res A 79(2):349-358, 2006.
  12. Linde A. Dentin matrix proteins: composition and possible functions in calcification. Anat Rec 224(2):154-166, 1989. https://doi.org/10.1002/ar.1092240206
  13. Chaussain-Miller C, Fioretti F, Goldberg M, Menashi S. The role of matrix metalloproteinases (MMPs) in human caries. J Dent Res 85(1):22-32, 2006. https://doi.org/10.1177/154405910608500104
  14. Orsini G, Ruggeri A, Jr., Mazzoni A, Papa V, Mazzotti G, Di Lenarda R, Breschi L. Immunohistochemical identification of decorin and biglycan in human dentin: a correlative field emission scanning electron microscopy/transmission electron microscopy study. Calcif Tissue Int 81(1):39-45, 2007. https://doi.org/10.1007/s00223-007-9027-z
  15. Goldberg M, Takagi M. Dentine proteoglycans: composition, ultrastructure and functions. Histochem J 25(11):781-806, 1993. https://doi.org/10.1007/BF02388111
  16. Scott JE. Proteoglycan:collagen interactions and subfibrillar structure in collagen fibrils. Implications in the development and ageing of connective tissues. J Anat 169(1):23-35, 1990.
  17. Ho SP, Sulyanto RM, Marshall SJ, Marshall GW. The cementum-dentin junction also contains glycosaminoglycans and collagen fibrils. J Struct Biol 151(1):69- 78, 2005. https://doi.org/10.1016/j.jsb.2005.05.003
  18. Hall R, Septier D, Embery G, Goldberg M. Stromelysin-1 (MMP-3) in forming enamel and predentine in rat incisor-coordinated distribution with proteoglycans suggests a functional role. Histochem J 31(12):761-770, 1999. https://doi.org/10.1023/A:1003945902473
  19. Oh EW, Choi KK, Kim JR, Park SJ. Effect of chlohexidine on microtensile bond strength of dentin bonding systems. J Kor Acad Cons Dent 33(2):148-161, 2008. https://doi.org/10.5395/JKACD.2008.33.2.148
  20. Smith AJ, Wade W, Addy M, Embery G. The relationship between microbial factors and gingival crevicular fluid glycosaminoglycans in human adult periodontitis. Arch Oral Biol 42(1):89-92, 1997. https://doi.org/10.1016/S0003-9969(96)00103-3
  21. Breschi L, Lopes M, Gobbi P, Mazzotti G, Falconi M, Perdigao J. Dentin proteoglycans: an immunocytochemical FEISEM study. J Biomed Mater Res 61(1): 40-46, 2002. https://doi.org/10.1002/jbm.10102
  22. Van Meerbeek B, Vargas M, Inoue S, Yoshida Y, Perdigao J, Lambrechts P, Vanherle G. Microscopy investigations. Techniques, results, limitations. Am J Dent 13(Spec No):3D-18D, 2000.
  23. Perdigao J, Lambrechts P, Van Meerbeek B, Vanherle G, Lopes AL. Field emission SEM comparison of four postfixation drying techniques for human dentin. J Biomed Mater Res 29(9):1111-1120, 1995. https://doi.org/10.1002/jbm.820290911
  24. Embery G, Hall R, Waddington R, Septier D, Goldberg M. Proteoglycans in dentinogenesis. Crit Rev Oral Biol Med 12(4):331-349, 2001. https://doi.org/10.1177/10454411010120040401
  25. Goldberg M, Septier DS. Differential staining of glycosaminoglycans in the predentine and dentine of rat incisor using cuprolinic blue at various magnesium chloride concentrations. Histochem J 24(9):648-654, 1992. https://doi.org/10.1007/BF01047585
  26. Hall RC, Embery G, Lloyd D. Immunochemical localization of the small leucine-rich proteoglycan lumican in human predentine and dentine. Arch Oral Biol 42(10-11):783-786, 1997. https://doi.org/10.1016/S0003-9969(97)00024-1
  27. Kagayama M, Sasano Y, Mizoguchi I, Kamo N, Takahashi I, Mitani H. Localization of glycosaminoglycans in periodontal ligament during physiological and experimental tooth movement. J Periodontal Res 31(4):229-234, 1996. https://doi.org/10.1111/j.1600-0765.1996.tb00487.x
  28. Yamamoto T, Domon T, Takahashi S, Islam MN, Suzuki R. The fibrous structure of the cemento-dentinal junction in human molars shown by scanning electron microscopy combined with NaOH-maceration. J Periodontal Res 35(1):59-64, 2000. https://doi.org/10.1034/j.1600-0765.2000.035002059.x
  29. Scott JE. Proteoglycan-fibrillar collagen interactions. Biochem J 1988;252:313-323. https://doi.org/10.1042/bj2520313
  30. Raspanti M, Congiu T, Alessandrini A, Gobbi P, Ruggeri A. Different patterns of collagen-proteoglycan interaction: a scanning electron microscopy and atomic force microscopy study. Eur J Histochem 44(4):335-343, 2000.
  31. Bartold PM, Miki Y, McAllister B, Narayanan AS, Page RC. Glycosaminoglycans of human cementum. J Periodontal Res 23(1):13-17, 1988. https://doi.org/10.1111/j.1600-0765.1988.tb01020.x
  32. Redaelli A, Vesentini S, Soncini M, Vena P, Mantero S, Montevecchi FM. Possible role of decorin glycosaminoglycans in fibril to fibril force transfer in relative mature tendons--a computational study from molecular to microstructural level. J Biomech 36(10): 1555-1569, 2003. https://doi.org/10.1016/S0021-9290(03)00133-7
  33. Mazzoni A, Pashley DH, Ruggeri A, Jr., Vita F, Falconi M, Di Lenarda R, Breschi L. Adhesion to chondroitinase ABC treated dentin. J Biomed Mater Res B Appl Biomater 86(1):228-236, 2008.
  34. Pereira PN, Bedran-de-Castro AK, Duarte WR, Yamauchi M. Removal of noncollagenous components affects dentin bonding. J Biomed Mater Res B Appl Biomater 80(1):86-91, 2007.
  35. Elliott DM, Robinson PS, Gimbel JA, Sarver JJ, Abboud JA, Iozzo RV, Soslowsky LJ. Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann Biomed Eng 31(5):599-605, 2003. https://doi.org/10.1114/1.1567282
  36. Perdigao J, Frankenberger R. Effect of solvent and rewetting time on dentin adhesion. Quintessence Int 32(5):385-390, 2001.
  37. Pashley DH, Tay FR, Carvalho RM, Rueggeberg FA, Agee KA, Carrilho M, Donnelly A, Garcia-Godoy F. From dry bonding to water-wet bonding to ethanol-wet bonding. A review of the interactions between dentin matrix and solvated resins using a macromodel of the hybrid layer. Am J Dent 20(1):7-20, 2007.
  38. Van Landuyt KL, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A, Coutinho E, Suzuki K, Lambrechts P, Van Meerbeek B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 28(26):3757-3785, 2007. https://doi.org/10.1016/j.biomaterials.2007.04.044
  39. Peters WJ, Jackson RW, Smith DC. Studies of the stability and toxicity of zinc polyacrylate (polycarboxylate) cements (PAZ). J Biomed Mater Res 8(1):53-60, 1974. https://doi.org/10.1002/jbm.820080107
  40. Van Meerbeek B, Conn LJ, Jr., Duke ES, Eick JD, Robinson SJ, Guerrero D. Correlative transmission electron microscopy examination of nondemineralized and demineralized resin-dentin interfaces formed by two dentin adhesive systems. J Dent Res 75(3):879-888, 1996. https://doi.org/10.1177/00220345960750030401