DOI QR코드

DOI QR Code

GENE EXPRESSION PROFILING IN HUMAN DENTAL PULP CELLS TREATED WITH MINERAL TRIOXIDE AGGREGATE

Mineral trioxide aggregate가 인간치수세포에서 유전자 발현에 미치는 영향

  • Kim, Yong-Beom (Department of Conservative Dentistry, Dental Research Institute, BK21 Program, School of Dentistry, Seoul National University) ;
  • Shon, Won-Jun (Department of Conservative Dentistry, Dental Research Institute, BK21 Program, School of Dentistry, Seoul National University) ;
  • Lee, Woo-Cheol (Department of Conservative Dentistry, Dental Research Institute, BK21 Program, School of Dentistry, Seoul National University) ;
  • Kum, Kee-Yeon (Department of Conservative Dentistry, Dental Research Institute, BK21 Program, School of Dentistry, Seoul National University) ;
  • Baek, Seung-Ho (Department of Conservative Dentistry, Dental Research Institute, BK21 Program, School of Dentistry, Seoul National University) ;
  • Bae, Kwang-Shik (Department of Conservative Dentistry, Dental Research Institute, BK21 Program, School of Dentistry, Seoul National University)
  • 김용범 (서울대학교 치의학대학원 치과보존학교실, 치의학연구소, BK21 Program) ;
  • 손원준 (서울대학교 치의학대학원 치과보존학교실, 치의학연구소, BK21 Program) ;
  • 이우철 (서울대학교 치의학대학원 치과보존학교실, 치의학연구소, BK21 Program) ;
  • 금기연 (서울대학교 치의학대학원 치과보존학교실, 치의학연구소, BK21 Program) ;
  • 백승호 (서울대학교 치의학대학원 치과보존학교실, 치의학연구소, BK21 Program) ;
  • 배광식 (서울대학교 치의학대학원 치과보존학교실, 치의학연구소, BK21 Program)
  • Received : 2010.03.20
  • Accepted : 2010.04.12
  • Published : 2010.05.31

Abstract

This study investigated the changes in gene expression when mineral trioxide aggregate (MTA) was applied in vitro to human dental pulp cells (HDPCs). MTA in a teflon tube (diameter 10 mm, height 2 mm) was applied to HDPCs. Empty tube-applied HDPCs were used as negative control. For microarray analysis, total RNA was extracted at 6, 24, and 72 hrs after MTA application. The results were confirmed selectively by performing reverse transcriptase polymerase chain reaction for genes that showed changes of more than two-fold or less than half. Of the 24,546 genes, 109 genes were up-regulated greater than twofold (e.g., FOSB, THBS1, BHLHB2, EDN1, IL11, FN1, COL10A1, and TUFT1) and 69 genes were down-regulated below 50% (e.g., SMAD6 and DCN). These results suggest that MTA, rather than being a bio-inert material, may have potential to affect the proliferation and differentiation of pulp cells in various ways.

이 연구에서는 mineral trioxide aggregate (MTA)를 in vitro로 인간치수세포에 적용하였을 때 유전자들의 변화를 조사하였다. 실험군은 MTA를 teflon tube (직경 10 mm 길이 2 mm)에 담아 4시간 경화시킨 후HDPCs에 적용하였고, 대조군은 빈tube만을 적용하였다. 6, 24, 72시간 후 total RNA를 추출하여 microarray를 이용하여 분석하여, 2배 이상 또는 절반 이하의 변화를 보이는 유전자 중 선택적으로 역전사 중합효소 연쇄반응(reverse transcriptase polymerase chain reaction)을 사용하여 발현을 확인하였다. 24,546개의 유전자 중에서 109개의 유전자가 2배 이상 up-regulation되었으며(예. FOSB, THBS1, BHLHB2, EDN1,IL11, FN1, COL10A1, TUFT1) 69개의 유전자가 50%이하로 down-regulation되었다(예. SMAD6, DCN). MTA는 bio-inert한 재료라기 보다는 치수세포에 다양한 경로로 영향을 주는 재료로 사료된다. 특히 치수세포의 분화와 증식에 관여하는 유전자의 변화에 영향을 주며 석회화 과정에 관여하는 유전자의 변화에 직접적인 영향을 주리라 사료된다.

Keywords

References

  1. American Association of Endodontists. Glossary of endodontic terms, 7th ed. pp. 40, 2003.
  2. Cox CF, Subay RK, Ostro E, Suzuki S, Suzuki SH. Tunnel defects in dentin bridges: their formation following direct pulp capping. Oper Dent 21:4-11, 1996.
  3. Cox CF, Hafez AA, Akimoto N, Otsuki M, Suzuki S, Tarim B. Biocompatibility of primer, adhesive and resin composite systems on non-exposed and exposed pulps of non-human primate teeth. Am J Dent 11:s55- 63, 1998.
  4. Cox CF, Tarim B, Kopel H, Gu ¨rel G, Hafez A. Technique sensitivity: biological factors contributing to clinical success with various restorative materials. Adv Dent Res 15:85-90, 2001. https://doi.org/10.1177/08959374010150012301
  5. Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J Endod 25:197-205, 1999. https://doi.org/10.1016/S0099-2399(99)80142-3
  6. Torabinejad M, Hong CU, Pitt-Ford TR, Kettering JD. Cytotoxicity of four root end filling materials. J Endod 21:489-92, 1995. https://doi.org/10.1016/S0099-2399(06)80518-2
  7. Dominguez MS, Witherspoon DE, Gutmann JL, Opperman LA. Histological and scanning electron microscopy assessment of various vital pulp-therapy materials. J Endod 29:324-33, 2003. https://doi.org/10.1097/00004770-200305000-00003
  8. Pitt-Ford TR, Torabinejad M, Abedi HR, Bakland LK, Kariyawasam SP. Using mineral trioxide aggregate as a pulp-capping material. J Am Dent Assoc 127:1491- 4, 1996. https://doi.org/10.14219/jada.archive.1996.0058
  9. Yun YR, Yang IS, Hwang YC, Hwang IN, Choi HR, Yoon SJ, Kim SH, Oh WM. Pulp response of mineral trioxide aggregate, calcium sulfate or calcium hydroxide. J Kor Acad Cons Dent 32:95-101, 2007. https://doi.org/10.5395/JKACD.2007.32.2.095
  10. Bae JH, Kim YG, Yoon PY, Cho BH, Choi YH. Pulp response of beagle dog to direct pulp capping materials: Histological study. J Kor Acad Cons Dent 35:5-12, 2010. https://doi.org/10.5395/JKACD.2010.35.1.005
  11. Andelin W, Shabahang S, Wright K, Torabinejad M. Identification of hard tissue after experimental pulp capping using dentin sialoprotein (DSP) as a marker. J Endod 29:646-50, 2003. https://doi.org/10.1097/00004770-200310000-00008
  12. Kuratate M, Yoshiba K, Shigetani Y, Yoshiba N, Ohshima H, Okiji T. Immunohistochemical analysis of nestin, osteopontin, and proliferating cells in the reparative process of exposed dental pulp capped with mineral trioxide aggregate. J Endod 34:970-4, 2008. https://doi.org/10.1016/j.joen.2008.03.021
  13. Min KS, Yang SH, Kim EC. The Combined Effect of Mineral Trioxide Aggregate and Enamel Matrix Derivative on Odontoblastic Differentiation in Human Dental Pulp Cells. J Endod 35:847-51, 2009. https://doi.org/10.1016/j.joen.2009.03.014
  14. Brown PO, Botstein D. Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33-7, 1999. https://doi.org/10.1038/4462
  15. Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone 29:532-39, 2001. https://doi.org/10.1016/S8756-3282(01)00612-3
  16. McLachlan JL, Smith AJ, Bujalska IJ, Cooper PR. Gene expression profiling of pulpal tissue reveals the molecular complexity of dental caries. Biochim Biophys Acta 1741:271-81, 2005. https://doi.org/10.1016/j.bbadis.2005.03.007
  17. Syudo M, Yamada S, Yanagiguchi K, Matsunaga T, Hayashi Y. Early gene expression analyzed by a genome microarray and real-time PCR in osteoblasts cultured with a 4-META/MMA-TBB adhesive resin sealer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:e77-e81, 2009. https://doi.org/10.1016/j.tripleo.2008.10.020
  18. So H, Park SH, Choi GW. The comparison of gene expression from human dental pulp cells and periodontal ligament cells. J Kor Cons Dent 34:430-41, 2009. https://doi.org/10.5395/JKACD.2009.34.5.430
  19. Yokose S, Kadokura H, Tajima Y. Establishment and characterization of a culture system for enzymatically released rat dental pulp cells. Calcif Tissue Int 66:139-44, 2000. https://doi.org/10.1007/s002230010028
  20. Goldberg M, Farges JC, Lacerda-Pinheiro S. Inflammatory and immunological aspects of dental pulp repair. Pharmacol Res 58:137-47, 2008. https://doi.org/10.1016/j.phrs.2008.05.013
  21. Matsui S, Takeuchi H, Tsujimoto Y, Matsushima K. Effects of Smads and BMPs induced by Ga-Al-As laser irradiation on calcification ability of human dental pulp cells. J Oral Sci 50:75-81, 2008. https://doi.org/10.2334/josnusd.50.75
  22. Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K. Smad6 inhibits signaling by the TGF-$\beta$ superfamily. Nature 389:622-6, 1997.
  23. Keklikoglu N. The localization of Fos B, a member of transcription factor AP-1 family, in rat odontoblasts and pulpal undifferentiated ectomesenchymal cells. Folia Histochem Cytobiol 42:191-3, 2004.
  24. Sabatakos G, Sims NA, Chen J, Aoki K, Kelz MB, Amling M, Bouali Y, Mukhopadhyay K, Ford K, Nestler EJ, Baron R. Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat Med 6:985-90, 2000. https://doi.org/10.1038/79683
  25. Shen M, Yoshida E, Yan W, Kawamoto T, Suardita K, Koyano Y, Fujimoto K, Noshiro M, Kato Y. Basic helix-loop-helix protein DEC1 promotes chondrocyte differentiation at the early and terminal stages. J Biol Chem 277:50112-20, 2002. https://doi.org/10.1074/jbc.M206771200
  26. Iwata T, Kawamoto T, Sasabe E, Miyazaki K, Fujimoto K, Noshiro M, Kurihara H, Kato Y. Effects of overexpression of basic helix-loop-helix transcription factor Dec1 on osteogenic and adipogenic differentiation of mesenchymal stem cells. Eur J Cell Biol 85:423-31, 2006. https://doi.org/10.1016/j.ejcb.2005.12.007
  27. Lawler J. The functions of thrombospondin-1 and-2. Curr Opin Cell Biol 12:634-40, 2000. https://doi.org/10.1016/S0955-0674(00)00143-5
  28. Murphy-Ullrich JE, Schultz-Cherry S, Hook M. Transforming growth factor-beta complexes with thrombospondin. Mol Biol Cell 3:181-8, 1992. https://doi.org/10.1091/mbc.3.2.181
  29. Ueno A, Yamashita K, Nagata T, Tsurumi C, Miwa Y, Kitamura S, Inoue H. cDNA cloning of bovine thrombospondin 1 and its expression in odontoblasts and predentin. Biochim Biophys Acta 1382:17-22, 1998. https://doi.org/10.1016/S0167-4838(97)00188-X
  30. Casasco A, Calligaro A, Casasco M, Springall DR, Tenti P, Marchetti C. Immunohistochemical localization of endothelin-like immunoreactivity in human tooth germ and mature dental pulp. Anat and Embryol 183:515-20, 1991.
  31. Neuhaus SJ, Byers MR. Endothelin receptors and endothelin-1 in developing rat teeth. Arch Oral Biol 52:655-62, 2007. https://doi.org/10.1016/j.archoralbio.2006.12.022
  32. Guidry C, Hook M. Endothelins produced by endothelial cells promote collagen gel contraction by fibroblasts. J Cell Biol 115:873-80, 1991. https://doi.org/10.1083/jcb.115.3.873
  33. Marini M, Carpi S, Bellini A, Patalano F, Mattoli S. Endothelin-1 induces increased fibronectin expression in human bronchial epithelial cells. Biochem Biophys Res Commun 220:896-9, 1996. https://doi.org/10.1006/bbrc.1996.0502
  34. Khan ZA, Farhangkhoee H, Mahon JL, Bere L, Gonder JR, Chan BM. Endothelins: regulators of extracellular matrix protein production in diabetes. Exp Biol Med 231:1022-9, 2006.
  35. Yan Y, Liu Z, Zhang WG. In vitro study of the effects of endothelin-1 on human dental pulp cells. Chin J Dent Res 2:5-13, 1999.
  36. Kido S, Kuriwaka-Kido R, Imamura T, Ito Y, Inoue D, Matsumoto T. Mechanical stress induces Interleukin-11 expression to stimulate osteoblast differentiation. Bone 45:1125-32, 2009. https://doi.org/10.1016/j.bone.2009.07.087
  37. Suga K, Saitoh M, Fukushima S, Takahashi K, Nara H, Yasuda S. Interleukin-11 induces osteoblast differentiation and acts synergistically with bone morphogenetic protein-2 in C3H10T1/2 cells. J Interferon Cytokine Res 21:695-707, 2001. https://doi.org/10.1089/107999001753124435
  38. Takeuchi Y, Watanabe S, Ishii G, Takeda S, Nakayama K, Fukumoto S. Interleukin-11 as a stimulatory factor for bone formation prevents bone loss with advancing age in mice. J Biol Chem 277:49011-8, 2002. https://doi.org/10.1074/jbc.M207804200
  39. Hynes R. Molecular biology of fibronectin. Ann Rev Cell Biol 1: 67-90, 1985. https://doi.org/10.1146/annurev.cb.01.110185.000435
  40. Lesot H, Osman M, Ruch JV. Immunofluorescent localization of collagens, fibronectin and laminin during terminal differentiation of odontoblasts. Dev Biol 82:371- 81, 1981. https://doi.org/10.1016/0012-1606(81)90460-7
  41. Yoshiba N, Yoshiba K, Twaku M, Nakamura H, Osawa H. A confocal laser scanning microscopic study of the immunofluorescent localization of FN in the odontoblast layer of human teeth. Arch Oral Biol 39:395-400, 1994. https://doi.org/10.1016/0003-9969(94)90169-4
  42. Wang P, Hao J, Shi J. Actions of bovine plasma fibronectin on cultured human dental pulp cells. Chin J Dent Res 3:55-62, 2000.
  43. Hoshi K, Kemmotsu S, Takeuchi Y, Amizuka N, Ozawa H. The primary calcification in bones follows removal of decorin and fusion of collagen fibrils. J Bone Miner Res 14:273-80,1999. https://doi.org/10.1359/jbmr.1999.14.2.273
  44. Mochida Y, Duarte WR, Tanzawa H, Paschalis EP, Yamauchi M. Decorin modulates matrix mineralization in vitro. Biochem Biophys Res Commun 305:6-9, 2003. https://doi.org/10.1016/S0006-291X(03)00693-4
  45. Alini M, Marriott A, Chen T, Abe S, Poole AR. A novel angiogenic molecule produced at the time of chondrocyte hypertrophy during endochondral bone formation. Dev Biol 176:124-32, 1996. https://doi.org/10.1006/dbio.1996.9989
  46. Felszeghy S, Hollo K, Modis L, Lammi, MJ. Type X collagen in human enamel development: a possible role in mineralization. Acta Odontol Scand 58:171-6, 2000. https://doi.org/10.1080/000163500429172
  47. Kwan KM, Pang MK, Zhou S, Cowan SK, Kong RY, Pfordte T. Abnormal compartmentalization of cartilage matrix components in mice lacking collagen X: Implications for function. J Cell Biol 136:459-71, 1997. https://doi.org/10.1083/jcb.136.2.459
  48. Deutsch D, Palmon A, Fisher LW, Kolodny N, Termine JD, Young MF. Sequencing of bovine enamelin (“tuftelin”) a novel acidic enamel protein. J Biol Chem 266:16021-8, 1991.
  49. Paine CT, Paine ML, Luo W, Okamoto CT, Lyngstadaas SP, Snead ML. A tuftelin-interacting protein (TIP39) localizes to the apical secretory pole of mouse ameloblasts. J Biol Chem 275:22284-92, 2000. https://doi.org/10.1074/jbc.M000118200

Cited by

  1. Comparison of gene expression profiles of human dental pulp cells treated with mineral trioxide aggregate and calcium hydroxide vol.36, pp.5, 2011, https://doi.org/10.5395/JKACD.2011.36.5.397
  2. Analysis of gene expression during odontogenic differentiation of cultured human dental pulp cells vol.37, pp.3, 2012, https://doi.org/10.5395/rde.2012.37.3.142