DOI QR코드

DOI QR Code

고온단조에 의한 액상소결 탄화규소의 미세구조 및 기계적 특성

Microstructure and mechanical properties in hot-forged liquid-phase-sintered silicon carbide

  • 노명훈 (서울시립대학교 신소재공학과) ;
  • 김원중 (서울시립대학교 신소재공학과)
  • Roh, Myong-Hoon (Department of Materials Science and Engineering, University of Seoul) ;
  • Kim, Won-Joong (Department of Materials Science and Engineering, University of Seoul)
  • 투고 : 2010.04.20
  • 심사 : 2010.06.18
  • 발행 : 2010.06.30

초록

평균 입도의 크기가 ${\sim}1.7\;{\mu}m$${\sim}30\;nm$인 두 종류의 탄화규소 분말을 7 wt% $Y_2O_3$, 2 wt% $Al_2O_3$, 1 wt% MgO를 소결 첨가제로 사용하여 $1800^{\circ}C$에서 1 시간동안 Ar 분위기에서 압력을 가하여 고온가압소결을 하였다. 고온 가압소결한 시편은 $1950^{\circ}C$에서 6 시간동안 Ar 분위기에서 40 MPa의 압력을 가하여 고온 단조 하였다. 두 시편 모두 고온가압소결 후의 미세구조는 등방형 모양의 결정립을 나타내었으며, 고온 단조 후에 결정립 성장이 나타났다. 평균 입도의 크기가 작은 탄화규소 분말로 소결한 시편의 결정립의 크기가 고온 단조 후에도 더 작은 결정립을 나타내었다. 고온 단조 후의 압력축과 평행한 방향과 수직한 방향의 미세구조는 비슷하였다. 탄화규소의 $\beta$에서 $\alpha$로의 상변태가 활발하게 발생하지 않아 집합조직의 발달은 발견되지 않았다. 평균 입도의 크기가 큰 탄화규소 분말로 제작된 시편의 파괴인성 (${\sim}3.9\;MPa{\cdot}m^{1/2}$), 경도 (~ 25.2 GPa), 굽힘강도가 (480 MPa) 평균 입도의 크기가 작은 탄화규소로 제작된 시편보다 높게 나타났다.

Two kind of $\beta$-SiC powders of different particle sizes (${\sim}1.7\;{\mu}m$ and ${\sim}30\;nm$), containing 7 wt% $Y_2O_3$, 2 wt% $Al_2O_3$ and 1 wt% MgO as sintering additives, were prepared by hot pressing at $1800^{\circ}C$ for 1 h under applied pressures, and then were hot-forged at $1950^{\circ}C$ for 6 h under 40 MPa in argon. All the hot-pressed specimens consisted of equiaxed grains and were developed grain growth after hot-forging. The smaller starting powder was developed the finer microstructure. The microstructures on the surfaces parallel and perpendicular to the pressing direction of the hot-forged SiC were similar to each other, and no texture development was observed because of the lack of massive $\beta$ to $\sigma$ phase transformation of SiC. The fracture toughness (${\sim}3.9\;MPa{\cdot}m^{1/2}$), hardness (~ 25.2 GPa) and flexural strength (480 MPa) of hot-forged SiC using larger starting powder were higher than those of the other.

키워드

참고문헌

  1. A. M. Kueck, K. K. Kim, Q. M. Ramasse, L. C. D. Jonghe, Nd R. O. Ritchie: Atomic-resolution imaging of the nanoscale origin of toughness in rare-earth doped SiC, Nano Lett. 8, 2935-2939, 2008. https://doi.org/10.1021/nl8017884
  2. D. A. Ray, S. Kaur, R. A. Cutler, and S. K. Shetty: Effects of additives on the pressure-assisted densification and properties of silicon carbide, J. Am. Ceram. Soc. 91, 2163-2169, 2008. https://doi.org/10.1111/j.1551-2916.2008.02467.x
  3. Y.-W. Kim, Y. S. Chun, T. Nishimura, M. Mitomo, and Y. H. Lee: High-temperature strength of silicon carbide ceramics sintered with rare-earth oxide and aluminum nitride, Acta Mater. 55, 727-736, 2007. https://doi.org/10.1016/j.actamat.2006.08.059
  4. K. Y. Lim, D. H. Jang, Y.-W. Kim, J. Y. Park, and D. S. Park: Fabrication of dense 2D SiC fiber-SiC matrix composites by slurry infiltration and a stacking process, Met. Mater. -Int. 14, 589-591, 2008. https://doi.org/10.3365/met.mat.2008.10.589
  5. S. I. Ko, S. J. Lee, M. H. Roh, W. Kim, and Y.-W. Kim: Effect of annealing on mechanical properties of silicon carbide sintered with aluminum nitride and scandium oxide, Met. Mater. -Int. 15, 149-153, 2009. https://doi.org/10.1007/s12540-009-0149-x
  6. M. Mitomo, Y.-W. Kim, and H. Hirotsuru: Fabrication of silicon carbide nanoceramics, J. Mater. Res. 11, 1601-1604, 1996. https://doi.org/10.1557/JMR.1996.0200
  7. Y. Shinoda, T. Nagano, H. Gu, and F. Wakai: Superplasticity of silicon carbide, J. Am. Ceram. Soc. 82, 2916-2918, 1999.
  8. T. Nagano, K. Kaneko, G. D. Zhan, M. Mitomo, and Y.-W. Kim: Superplastic behavior of liquid-phase sintered $\beta-SiC$ prepared with oxynitride glasses in an N2 atmosphere, J. Europ. Ceram. Soc. 22, 263-270, 2002. https://doi.org/10.1016/S0955-2219(01)00258-8
  9. T. Nagano. H. Gu, K. Kaneko, G. D. Zhan, and M. Mitomo: Effect of Dynamic Microstructural Change on Deformation Behavior in Liquid-Phase-Sintered Silicon Carbide with $Al_2O_3-Y_2O_3-CaO$ Additions, J. Am. Ceram. Soc. 84, 2045-2050, 2001.
  10. Y. I. Lee, Y.-W. Kim, and M. Mitomo: Microstructure stability of fine-grained silicon carbide ceramics during annealing", J. Mater. Sci. 39, 3613-3617, 2004. https://doi.org/10.1023/B:JMSC.0000030713.40220.07
  11. H. Gu, Y. Shinoda, and F. Wakai: Detection of Boron Segregation to Grain Boundaries in Silicon Carbide by Spatially Resolved Electron Energy-Loss Spectroscopy, J. Am. Ceram. Soc. 82, 469-472, 1999.
  12. T. Nagano, H. Gu, Y. Shinoda, G. D. Zhan, M. Mitomo, and F. Wakai: Tensile ductility of liquid-phase sintered $\beta-silicon$ carbide at elevated temperature, Mater. Sci. Fourm, 304/306, 507-512, 1999. https://doi.org/10.4028/www.scientific.net/MSF.304-306.507
  13. T. Nagano, H. Gu, G. D. Zhan, and M. Mitomo: Effect of atmosphere on superplastic deformation behavior in nanocrystalline liquid-phase-sintered silicon carbide with $Al_2O_3-Y_2O_3$ additions, J. Mater. Sci., 37, 4419-4424, 2002. https://doi.org/10.1023/A:1020629308663
  14. R. J. Xie, M. Mitomo, W. Kim, Y.-W. Kim, G. D. Zhan, and Y. Akimune: Phase transformation and texture in hot-forged or annealed liquid-phase-sintered silicon carbide ceramics, J. Am. Ceram. Soc. 85, 459-465, 2002.
  15. S. J. Lee, Y. I. Lee, Y.-W. Kim, R. J. Xie, M. Mitomo, and G. D. Zhan: Mechanical properties of hot-forged silicon carbide ceramics, Scripta Mater. 52, 153-156, 2005. https://doi.org/10.1016/j.scriptamat.2004.09.012
  16. G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall: Indentation techniques for measuring toughness of ceramics, Proceedings - Australian Ceramic Conference , 32-34, 1980.
  17. L. S. Sigl and H. J. Kleebe:
  18. Y.-W. Kim. M. Mitomo, and G. D. Zhan: Mechanism of grain growth in liquid-phase-sintered $\beta-SiC$, J. Mater. Res. 14, 4291-4293, 1999. https://doi.org/10.1557/JMR.1999.0581
  19. I. Amato: The effect of gas trapped within pores during sintering and density regression of ceramic bodies, Mater. Sci. Eng. 7, 49-53, 1971. https://doi.org/10.1016/0025-5416(71)90060-7
  20. Y.-W. Kim, M. Mitomo, H. Emoto, and J.-G. Lee: Effect of initial $\alpha-phase$ content on microstructure and mechanical properties of sintered silicon carbide, J. Am. Ceram. Soc. 81, 3136-3140, 1998. https://doi.org/10.1111/j.1151-2916.1998.tb02748.x
  21. S.-G. Lee, Y.-W. Kim, M. Mitomo: Relationship between microstructure and fracture toughness of toughened silicon carbide ceramics, J. Am, Ceram. Soc., 84, 1347-1353, 2001.
  22. RW. Rice, CC. Wu, B. Fred: Hardness-graing-size relations in ceramics, J. Am. Ceram. Soc., 77, 2539-2553, 1994. https://doi.org/10.1111/j.1151-2916.1994.tb04641.x
  23. C. Strehler, G. Blugan, B. Ehrle, B. Speisser, T. Graule, J. Kuebler: Influence of sintering and sintering additives on the mechanical and microstructural characteristics of $Si_3N_4$/SiC wood cutting tools, J. Europ. Ceram. Soc., article in press.