DOI QR코드

DOI QR Code

Study of a Y-Channel Micromixer with Obstacles to Enhancing Mixing

Y-Channel 마이크로 믹서의 혼합 개선을 위한 연구

  • Received : 2010.05.11
  • Accepted : 2010.07.28
  • Published : 2010.09.01

Abstract

In this study, an experiment was performed to obtain the optimum design of a passive micromixer for effective mixing by using a microsized device and rectangular obstacles; a low Reynolds number was maintained in the microchannel. The experiment was carried out by varying the number, size, and location of the rectangular obstacles. Further, the Y-channel's shape was optimized for maximizing the mixture ratio, which has limit qualification that an allowed value of pressure drop. The increase in the efficiency of mixing was observed to be greater than that in the case of circular obstacles by approximately 2.5%.

작은 장치 스케일과 낮은 Reynolds number를 수반하는 마이크로 채널에서의 혼합효율 최대화를 위하여 사각형 장애물을 이용한 Passive 마이크로 믹서의 최적 설계를 수행하였다. 이를 위해 본 연구에서는 구조가 단순한 Y-Channel내부에 사각형 장애물의 개수와 그 크기, 그리고 위치를 변화시켜가면서 비정렬 해석 기법을 이용하여 해석을 수행하였다. 또한 최대 허용 압력 강하값을 제한 조건으로 설정하여 제한조건을 만족하면서 혼합 효율을 최대화하는 Y-Channel 형상의 최적화를 수행하였다. 이를 통하여 2개의 사각형 장애물을 사용할 경우 원형 장애물의 결과와 비교했을 때 최대 2.5% 혼합 효율이 향상됨을 확인하였다.

Keywords

References

  1. Yang, Z., Goto, H., Matsumoto, M. and Maeda, R., 2000, "Active Micromixer for Microfluidic Systems Using Lead-Zirconate-Titanate (PZT)- Generated Ultrasonic Vibration," Electrophoresis, Vol. 21, Issue 1, pp. 116-119. https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<116::AID-ELPS116>3.0.CO;2-Y
  2. Knight, J. B., Vishwanath, A., Brody, J. P. and Austin, R. H., 1998, "Hydrodynamic Focusing on a Silicon Chip: Mixing Nanoliters in Microseconds," Phys. Rev. Lett., Vol. 80, No. 17, pp. 3863-3866. https://doi.org/10.1103/PhysRevLett.80.3863
  3. Stroock, A. D., Dertinger, S. K. W, Ajdari, A., Mezic, I., Stone, H. A. and Whitesides, G. M., 2002, "Chaotic Mixer for Microchannels," Science, Vol. 295, pp. 647-651. https://doi.org/10.1126/science.1066238
  4. Wolfgang, E., Volker, H. and Holger, L., 2000, "Microreactors," Wiley, New York, pp. 41-85.
  5. Schwesinger, N., Frank, T. and Wurmus, H., 1996, "Modular Microfluid System with an Integrated Micromixer," J. Micromech. Microeng., Vol. 6, pp. 99-102. https://doi.org/10.1088/0960-1317/6/1/023
  6. Koch, M., Chatelain, D., Evans, A. G. R. and Brunnschweiler, A., 1998, "Two Simple Micromixers Based on Silicon," J. Micromech. Microeng., Vol. 8, pp. 123-126. https://doi.org/10.1088/0960-1317/8/2/020
  7. Koch, M., Witt, H., Evans, A. G. R. and Brunnschweiler, A., 1999, "Improved Characterization Technique for Micromixers," J. Micromech. Microeng., Vol. 9, pp. 156-158. https://doi.org/10.1088/0960-1317/9/2/312
  8. Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H. and Beebe, D. J., 2000, "Passive Mixing in a Three- Dimensional Serpentine Microchannel," J. Microelectromech. Syst., Vol. 9, pp. 190-197. https://doi.org/10.1109/84.846699
  9. He, B., Burke, B. J., Zhang, X., Zhang, R. and Regnier, F. E., 2001, "A Picoliter-Volume Mixer for Microfluidic Analytical Systems," Anal. Chem., Vol. 73, pp. 1942-1947. https://doi.org/10.1021/ac000850x
  10. Stroock, A. D., Dertinger, S. K. W., Ajdari, A. 2002, "Chaotic Mixer for Microchannel," Science, Vol. 295, pp. 647-651. https://doi.org/10.1126/science.1066238
  11. Liu, Y. Z., Kim, B. J., Sung, H. J., 2004, "Two-Fluid Mixing in a Microchannel," J. Heat and Fluid Flow, Vol. 25, pp. 986-995. https://doi.org/10.1016/j.ijheatfluidflow.2004.03.006
  12. Wang, H., Iovenitti, P., Harvey, E. and Masood, S., 2002, "Optimizing Layout of Obstacles for Enhanced Mixing in Microchannels," Smart Materials and Structures, Vol. 11, pp. 662-667. https://doi.org/10.1088/0964-1726/11/5/306
  13. Jeon, N. L., Dertinger, S. K. W., Chiu, D. T., Choi, I. S., Stroock, A. D. and Whitesides, G. M., 2000, "Generation of Solution and Surface Gradients Using Microfluidic Systems," Langmuir, Vol. 16, pp. 311-8316. https://doi.org/10.1021/la000600b
  14. Nocedal, J. and Wright, S. J., 1999, "Numerical Optimization," Springer, New York, pp. 528-573.
  15. Demirdzic, I. and Muzaferija, S., 1995, "Numerical Method for Coupled Fluid Flow, Heat Transfer and Stress of Arbitrary Topology," Comput. Methods Appl. Mech. Engrg., Vol. 125, pp. 235-255. https://doi.org/10.1016/0045-7825(95)00800-G
  16. Jessee, J. P. and Fiveland, W. A., 1996, "Cell Vertex Algorithm for the Incompressible Navier- Stokes Equations on Non-Orthogonal Grids," Int. J. Numer. Meth. Fluids, Vol. 23, pp. 1-21. https://doi.org/10.1002/(SICI)1097-0363(19960815)23:3<271::AID-FLD423>3.0.CO;2-C
  17. Choi, J. W., Choi, H. I., Lee, D. H. and Lee, D. H, 2005, "Study on Mixing Enhancement of a Y-channel Micromixer with Obstacles," Trans. of the KSME(B), Vol. 29, No. 12. https://doi.org/10.3795/KSME-B.2005.29.12.1369
  18. Shin, Y. S., Choi, H. I., Lee, D. H. and Lee, D. H, 2005, "Optimum Design of a Y-Channel Micromixer for Enhanced Mixing," Trans. of the KSME(B), Vol. 30, No. 3, pp. 302-309. https://doi.org/10.3795/KSME-A.2006.30.3.302