DOI QR코드

DOI QR Code

Development of Worm-like Polymeric Drug Carriers with Multiple Ligands for Targeting Heterogeneous Breast Cancer Cells

  • Lee, A-Hyeong (Division of Biotechnology, The Catholic University of Korea) ;
  • Oh, Kyung-Taek (College of Pharmacy, Chung-Ang University) ;
  • Baik, Hye-Jung (Division of Biotechnology, The Catholic University of Korea) ;
  • Lee, Bo-Reum (Division of Biotechnology, The Catholic University of Korea) ;
  • Oh, Young-Taik (Department of Diagnostic Radiology, Yonsei University College of Medicine) ;
  • Lee, Don-Haeng (Department of Internal Medicine, Inha University) ;
  • Lee, Eun-Seong (Division of Biotechnology, The Catholic University of Korea)
  • Received : 2010.04.13
  • Accepted : 2010.06.17
  • Published : 2010.08.20

Abstract

In this study, wormorm-like polymeric micelles were construted from poly(L-lactic acid)-b-poly(ethyelen glycol) (PLLA-b-PEG) block copolymers via worm-like (or cylindrical) self- assembly that consisted of a relatively long PLLA block ($M_n$ 7K Daltons) at the core and a relatively short PEG block ($M_n$ 2K Daltons) as the shell. Several cancer-targeting moieties (such as folate, cobalamin, and cyclic arginine-glycine-aspartic (RGD) peptide) were chemically coupled with the succinylated or maleimided PEG block of PLLA-b-PEG to act as a cancer cell-specific targeting ligand for breast cancer. The worm-like micelles with muplite cancer cell-specific ligands proved to be successful in recognizing different breast cancer cells at once. This has the potential to aid in cancer-specific drug delivery and to be used as an effective treatment for breast cancer.

Keywords

References

  1. Song, H.; He, R.; Wang, K.; Ruan, J.; Bao, C.; Li, N.; Ji, J.; Cui, D. Biomaterials 2010, 31, 2302. https://doi.org/10.1016/j.biomaterials.2009.11.067
  2. Oh, K. T.; Baik, H. J.; Lee, A. H.; Oh, Y. T.; Youn, Y. S.; Lee, E. S. Int. J. Mol. Sci. 2009, 10, 3776. https://doi.org/10.3390/ijms10093776
  3. Ferrari, M. Nat. Rev. Cancer 2005, 5, 161. https://doi.org/10.1038/nrc1566
  4. Liu, L.; Lee, E.; Lee, M. Bull. Korean Chem. Soc. 2008, 29, 1485. https://doi.org/10.5012/bkcs.2008.29.8.1485
  5. Duncan, R. Nat. Rev. Cancer 2006, 6, 688. https://doi.org/10.1038/nrc1958
  6. Choi, Y. H.; Kim, S.; Han, M. S. Bull. Korean Chem. Soc. 2009, 30, 2830. https://doi.org/10.5012/bkcs.2009.30.11.2830
  7. Lee, E. S.; Gao, Z.; Bae, Y. H. J. Control. Release 2008, 132, 164. https://doi.org/10.1016/j.jconrel.2008.05.003
  8. King, S. H.; Huh, Y. M.; Kim, S.; Lee, D. K. Bull. Korean Chem. Soc. 2009, 30, 1827. https://doi.org/10.5012/bkcs.2009.30.8.1827
  9. Lee, E. S.; Youn, Y. S. Bull. Korean Chem. Soc. 2008, 29, 1539. https://doi.org/10.5012/bkcs.2008.29.8.1539
  10. Chaudhry, A.; Carrasquillo, J. A.; Avis, I. L.; Shuke, N.; Reynolds, J. C.; Bartholomew, R.; Larson, S. M.; Cuttitta, F.; Johnson, B. E.; Mulshine, J. L. Clin. Cancer Res. 1999, 5, 3385.
  11. Daniels, R. A.; Turley, H.; Kimberley, F. C.; Liu, X. S.; Mongkolsapaya, J.; Ch’En, P.; Xu, X. N.; Jin, B. Q.; Pezzella, F.; Screaton, G. R. Cell Res. 2005, 15, 430. https://doi.org/10.1038/sj.cr.7290311
  12. Muss, H. B.; Thor, A. D.; Berry, D. A.; Kute, T.; Liu, E. T.; Koerner, F.; Cirrincione, C. T.; Budman, D. R.; Wood, W. C.; Barcos, M.; Henderson, I. C. N. Engl. J. Med. 1994, 330, 1260. https://doi.org/10.1056/NEJM199405053301802
  13. Chaidarun, S. S.; Eggo, M. C.; Sheppard, M. C.; Stewart, P. M. Endocrinology 1994, 135, 2012. https://doi.org/10.1210/en.135.5.2012
  14. Wistuba, I. I.; Behrens, C.; Milchgrub, S.; Syed, S.; Ahmadian, M.; Virmani, A. K.; Kurvari, V.; Cunningham, T. H.; Ashfaq, R.; Minna, J. D.; Gazdar, A. F. Clin. Cancer Res. 1998, 4, 2931.
  15. Parker, N.; Turk, M. J.; Westrick, E.; Lewis, J. D.; Low, P. S.; Leamon, C. P. Anal. Biochem. 2005, 338, 284. https://doi.org/10.1016/j.ab.2004.12.026
  16. Yang, Z.; Bagheri-Yarmand, R.; Balasenthil, S.; Hortobagyi, G.; Sahin, A. A.; Barnes, C. J.; Kumar, R. Clin. Cancer Res. 2003, 9, 198.
  17. Reddy, J. A.; Low, P. S. Crit. Rev. Ther. Drug Carrier Syst. 1998, 15, 587.
  18. Lee, E. S.; Kim, D.; Youn, Y. S.; Oh, K. T.; Bae, Y. H. Angew. Chem. Int. Ed. 2008, 47, 2418. https://doi.org/10.1002/anie.200704121
  19. Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Nat. Nanotechnol. 2007, 2, 249. https://doi.org/10.1038/nnano.2007.70
  20. Dalhaimer, P.; Engler, A. J.; Parthasarathy, R.; Discher, D. E. Biomacromolecules 2004, 5, 1714. https://doi.org/10.1021/bm049884v
  21. Cai, S.; Vijayan, K.; Cheng, D.; Lima, E. M.; Discher, D. E. Pharm. Res. 2007, 24, 2099. https://doi.org/10.1007/s11095-007-9335-z
  22. Russel-Jones, G.; McTavish, K.; McEwan, J.; Rice, J.; Nowotnik, D. J. Inorg. Biochem. 2004, 98, 1625. https://doi.org/10.1016/j.jinorgbio.2004.07.009
  23. Zitzmann, S.; Ehemann, V.; Schwab, M. Cancer Res. 2002, 62, 5139.
  24. Liu, S. Mol. Pharm. 2006, 3, 472. https://doi.org/10.1021/mp060049x
  25. Oh, K. T.; Kim, D.; You, H. H.; Ahn, Y. S.; Lee, E. S. Int. J. Pharm. 2009, 376, 134. https://doi.org/10.1016/j.ijpharm.2009.04.021
  26. Oh, K. T.; Oh, Y. T.; Oh, N. M.; Kim, K.; Lee, D. H.; Lee, E. S. Int. J. Pharm. 2009, 375, 163. https://doi.org/10.1016/j.ijpharm.2009.04.005
  27. Lee, E. S.; Na, K.; Bae, Y. H. J. Control. Release 2003, 91, 103. https://doi.org/10.1016/S0168-3659(03)00239-6
  28. Lee, E. S.; Gao, Z.; Kim, D.; Park, K.; Kwon, I. C.; Bae, Y. H. J. Control. Release 2008, 129, 228. https://doi.org/10.1016/j.jconrel.2008.04.024
  29. Oh, N. M.; Oh, K. T.; Baik, H. J.; Lee, B. R.; Lee, A. H.; Youn, Y. S.; Lee, E. S. Colloids Surf. B Biointerfaces 2010, 78, 120. https://doi.org/10.1016/j.colsurfb.2010.02.023
  30. Walker, L. M. Curr. Opin. Colloid Interface Sci. 2001, 6, 451. https://doi.org/10.1016/S1359-0294(01)00116-9
  31. Hashizaki, K.; Taguchi, H.; Saito, Y. J. Oleo Sci. 2009, 58, 255. https://doi.org/10.5650/jos.58.255
  32. Ganguly, R.; Aswal, V. K.; Hassan, P. A. J. Colloid Interface Sci. 2007, 315, 693. https://doi.org/10.1016/j.jcis.2007.07.026
  33. Christian, D. A.; Cai, S.; Garbuzenko, O. B.; Harada, T.; Zajac, A. L.; Minko, T.; Discher, D. E. Mol. Pharm. 2009, 6, 1343. https://doi.org/10.1021/mp900022m
  34. Wasylnka, J. A.; Moore, M. M. Infect. Immunol. 2002, 70, 3156. https://doi.org/10.1128/IAI.70.6.3156-3163.2002
  35. Park, S. J.; Kim, S. H. J. Colloid Inter. Sci. 2004, 271, 336. https://doi.org/10.1016/j.jcis.2003.08.067

Cited by

  1. A Strategy in The Design of Micellar Shape for Cancer Therapy vol.1, pp.2, 2012, https://doi.org/10.1002/adhm.201100040
  2. Filomicelles in nanomedicine – from flexible, fragmentable, and ligand-targetable drug carrier designs to combination therapy for brain tumors vol.1, pp.39, 2013, https://doi.org/10.1039/c3tb20431f
  3. Morphological transition of self-assembled architectures from PEG-based ether-anhydride terpolymers vol.9, pp.11, 2013, https://doi.org/10.1039/c2sm27173g
  4. pH-sensitive short worm-like micelles targeting tumors based on the extracellular pH vol.2, pp.37, 2014, https://doi.org/10.1039/C4TB00779D
  5. Recent advance of pH-sensitive nanocarriers targeting solid tumors vol.47, pp.5, 2017, https://doi.org/10.1007/s40005-017-0349-1
  6. High-Performance Worm-like Mn-Zn Ferrite Theranostic Nanoagents and the Application on Tumor Theranostics vol.11, pp.33, 2010, https://doi.org/10.1021/acsami.9b08948