Effect of Myricetin in Osteoclast Differentiation and Bone Resorption

파골세포 분화와 골 흡수에 myricetin의 효과

  • Lee, An-Saeng (Wonkwang University Hospital) ;
  • Jang, Sung-Jo (Department of Neurosurgery, School of Medicine, Wonkwang University)
  • 이안생 (원광대학교 병원) ;
  • 장성조 (원광대학교 의과대학 신경외과학교실)
  • Received : 2010.01.15
  • Accepted : 2010.02.08
  • Published : 2010.02.25

Abstract

Osteoclasts are bone-resorbing giant cells that differentiate from hematopoietic cells of the monocyte/macrophages. Excessive osteoclast differentiation leads to gradual loss of bone mass causing fracture of the skeleton. The aim of this study was to develop a drug candidates for the treatment of osteoporosis. RANKL-induced osteoclast differentiation was dose-dependently inhibited by myricetin. Myricetin inhibited the expression of c-Fos, NFATc1, and TRAP in BMMs treated with RANKL. Myricetin disrupted the structure of actin ring and suppressed osteoclastic bone resorption. Also, myricetin induced apoptosis in mature osteoclasts. Myricetin inhibited the phosphorylation of ERK in mature osteoclasts treated with M-CSF. The activation of caspase-9 and caspase-3 was increased by myricetin treatment. Our results suggest that myricetin may be an effective agent to prevent bone diseases such as osteoporosis.

Keywords

References

  1. Teitelbaum, S.L., Ross, F.P. Genetic regulation of osteoclast development and funtion. Nat. Rev. Genet. 4: 638-649, 2003. https://doi.org/10.1038/nrg1122
  2. Karsenty, G., Wagner, E.F. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell. 4: 389-406, 2002.
  3. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., Martin, T.J. Modulation of osteoclast differentiation and functionby the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20: 345-357, 1999. https://doi.org/10.1210/er.20.3.345
  4. Boyle, W.J., Simonet, W.S., Lacey, D.L. Osteoclast differentiation and activation. Nature. 423: 337-342, 2003. https://doi.org/10.1038/nature01658
  5. Lee, Z.H., Kim, H.H. Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. Biochem.Biophys. Res. Commun. 305: 211-214, 2003. https://doi.org/10.1016/S0006-291X(03)00695-8
  6. Koga, T., Inui, M., Inoue, K., Kim, S., Suematsu, A., Kobayashi, E., Iwata, T., Ohnishi, H., Matozaki, T., Kodama, T., Taniguchi, T., Takayanagi, H., Takai T. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature. 428: 758-763, 2004. https://doi.org/10.1038/nature02444
  7. Takayanagi, H., Sato, K., Takaoka, A., Taniguchi, T. Interplay between interferon and other cytokine systems in bone metabolism. Immunol. Rev. 208: 181-193, 2005. https://doi.org/10.1111/j.0105-2896.2005.00337.x
  8. Takayanagi, H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 4: 292-304, 2007.
  9. Jung, Y.T., Choi, Y.H., Song, J.H., Lee, C.H., Lee, M.S., Jang, S.J., Cho, H.J., Kwak, H.B., Oh, J. Effect of Water Extract of Eucommia ulmoides in RANKL-induced osteoclast differentiation. Korean J. Oriental Physiology & Pathology. 23: 613-618, 2009.
  10. Cho, H.J., Choi, M.K., Le, Y., Song, J.H., Lee, M.S., Lee, C.H., Jang, S.J., Kwak, H.B., Oh, J. Effect of water extracts of Cuscuta japonica Chois in RANKL-induced osteoclast differentiation. Korean J. Oriental Physiology & Pathology. 23: 860-865, 2009.
  11. Kim, Y.K., Choi, Y.H., Song, J.H., Jang, S.J. Kim, H.J., Lee, C.H., Ahn, S.H., Lee, J.E., Kim, J.J., Choi, M.K. Inhibitory Effect of Deer Antler on Osteoclastic Bone Resorption. Korean J. Oriental Physiology & Pathology. 23: 613-618, 2009.
  12. German, J.B., Walzem, R.L. The health benefits of wine. Annu. Rev. Nutr. 20: 561-593, 2000. https://doi.org/10.1146/annurev.nutr.20.1.561
  13. Hakkinen, S.H., Karenlampi, S.O., Heinonen, I.M., Mykkanen, H.M., Torronen, A.R. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J. Agric. Food Chem. 47: 2274-2279, 1999. https://doi.org/10.1021/jf9811065
  14. Sellappan, S., Akoh, C.C. Flavonoids and antioxidant capacity of Georgia-grown Vidalia onions. J. Agric. Food Chem. 50: 5338-5342, 2002. https://doi.org/10.1021/jf020333a
  15. Chang, R.L., Huang, M.T., Wood, A.W., Wong, C.Q., Newmark, H.L., Yagi, H., Sayer, J.M., Jerina, D.M., Conney, A.H. Effect of ellagic acid and hydroxylated flavonoids on the tumorigenicity of benzo[a]pyrene and (+/-)-7 beta, 8 alphadihydroxy- 9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene on mouse skin and in the newborn mouse. Carcinogenesis. 6: 1127-1133, 1985. https://doi.org/10.1093/carcin/6.8.1127
  16. Waterhouse, A.L. Wine phenolics. Ann. N.Y. Acad. Sci. 957: 21-36, 2002. https://doi.org/10.1111/j.1749-6632.2002.tb02903.x
  17. Yamaguchi, M., Hamamoto, R., Uchiyama, S., Ishiyama, K. Effect of flavonoid on calcium content in femoral tissue culture and parathyroid hormone-stimulated osteoclastogenesis in bone marrow culture in vitro. Mol. Cell Biochem. 303: 83-88, 2007. https://doi.org/10.1007/s11010-007-9458-x
  18. Wattel, A., Kamel, S., Prouillet, C., Petit, J.P., Lorget, F., Offord, E., Brazier, M. Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NF kappa B and AP-1. J. Cell Biochem. 92: 285-295, 2004. https://doi.org/10.1002/jcb.20071
  19. Tsuji, M., Yamamoto, H., Sato, T., Mizuha, Y., Kawai, Y., Taketani, Y., Kato, S., Terao, J., Inakuma, T., Takeda, E. Dietary quercetin inhibits bone loss without effect on the uterus in ovariectomized mice. J. Bone Miner. Metab. 27: 673-681, 2009. https://doi.org/10.1007/s00774-009-0088-0
  20. Wakeyama, H., Akiyama, T., Kadono, Y., Nakamura, M., Oshima, Y., Nakamura, K., Tanaka, S. Posttranslational regulation of Bim by caspase-3. Ann. N.Y. Acad. Sci. 1116: 271-280, 2007. https://doi.org/10.1196/annals.1402.001
  21. Akiyama, T., Bouillet, P., Miyazaki, T., Kadono, Y., Chikuda, H., Chung, U.I., Fukuda, A., Hikita, A., Seto, H., Okada, T., Inaba, T., Sanjay, A., Baron, R., Kawaguchi, H., Oda, H., Nakamura, K., Strasser, A., Tanaka, S. Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BH3-only Bcl-2 family member Bim. EMBO J. 22: 6653-6664, 2003. https://doi.org/10.1093/emboj/cdg635
  22. Fleischmann, A., Hafezi, F., Elliott, C., Reme, C.E., Ruther, U., Wagne,r E.F. Fra-1 replaces c-Fos-dependent functions in mice. Genes Dev. 14: 2695-2700, 2000. https://doi.org/10.1101/gad.187900
  23. Matsuo, K., Galson, D.L., Zhao, C., Peng, L., Laplace, C., Wang, K.Z., Bachler, M.A., Amano, H., Aburatani, H., Ishikawa, H., Wagner, E.F. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J. Biol. Chem. 279: 26475-26480, 2004. https://doi.org/10.1074/jbc.M313973200
  24. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E.F., Mak, T.W., Kodama, T., Taniguchi, T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell. 3: 889-901, 2002. https://doi.org/10.1016/S1534-5807(02)00369-6
  25. Ross, F.P., Teitelbaum, S.L. alphavbeta3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol. Rev. 208: 88-105, 2005. https://doi.org/10.1111/j.0105-2896.2005.00331.x
  26. Delaisse, J.M., Andersen, T.L., Engsig, M.T., Henriksen, K., Troen, T., Blavier, L. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc. Res. Tech. 61: 504-513, 2003. https://doi.org/10.1002/jemt.10374
  27. Zhao, H., Ross F.P. Mechanisms of osteoclastic secretion. Ann. N. Y. Acad. Sci. 1116: 238-244, 2007. https://doi.org/10.1196/annals.1402.058
  28. Budihardjo, I., Oliver, H., Lutter, M., Luo, X., Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15: 269-290, 1999. https://doi.org/10.1146/annurev.cellbio.15.1.269
  29. Plas, D.R., Talapatra, S., Edinger, A.L., Rathmell, J.C., Thompson, C.B. Akt and Bcl-xL promote growth factor-independent survival through distinct effects on mitochondrial physiology. J. Biol. Chem. 276: 12041-12048, 2001. https://doi.org/10.1074/jbc.M010551200
  30. Lee, S.E., Chung, W.J., Kwak, H.B., Chung, C.H., Kwack, K.B., Lee, Z.H., Kim, H.H. Tumor necrosis factor-alpha supports the survival of osteoclasts through the activation of Akt and ERK. J. Biol. Chem. 276: 49343-49349, 2001. https://doi.org/10.1074/jbc.M103642200