DOI QR코드

DOI QR Code

Isolation and Identification of Lipolytic Enzyme Producing Pseudomonas sp. OME and Optimization of Cultural Conditions

지방분해효소 생산균 Pseudomonas sp. OME 의 분리 동정 및 배양조건 최적화

  • Kumar, G.Satheesh (Department of Microbiology, Acharya Nagarjuna University) ;
  • Reddy, T. Kiran (Department of Virology, Sri Venkateswara University) ;
  • Madhavi, B. (Department of Virology, Sri Venkateswara University) ;
  • Teja, P.Charan (Department of Virology, Sri Venkateswara University) ;
  • Chandra, M.Subhosh (Department of Biotechnology, College of Natural Resources and Life Science, Dong-a University) ;
  • Choi, Yong-Lark (Department of Biotechnology, College of Natural Resources and Life Science, Dong-a University)
  • Received : 2010.02.16
  • Accepted : 2010.04.15
  • Published : 2010.05.31

Abstract

Lipolytic enzyme-producing bacteria were isolated from edible oil mill effluents on tributyrin agar medium. The shake-flask-scale studies yielded a promising isolate and it was identified as Pseudomonas sp. An OME using various microbiological observations such as cultural, microscopic, and biochemical tests was undertaken and confirmed using PIBWIN bacterial identification software. Lipolytic enzyme production was screened with oils such as sunflower, caster, coconut, tributyrin, and olive. Amongst these, olive oil showed an increased lipase production 6.1 U/ml. In view of the highest lipolytic enzyme production with olive oil, further optimizations were carried out using olive oil as a carbon source. Lipolytic enzyme production was optimized by a conventional 'one variable at a time' approach and the significant factors were further analyzed statistically using response surface methodology (RSM). The effect of physical factors such as incubation time, temperature, initial medium pH, and nutritional factors such as concentration of olive oil and yeast extract were examined for lipase production. Lipolytic enzyme secretion was strongly affected by three variables (incubation time, concentration of yeast extract and olive oil). Therefore, the interaction of these three factors was further optimized using response surface methodology. The optimized conditions of lipase production using response surface methodology yielded a maximum of 9.62 U/ml with optimum conditions for incubation, yeast extract and olive oil concentrations were found to be 48 hr, 0.3 g. and 0.9 ml. respectively.

폐식용유에서 지방분해효소를 생산하는 세균을 분리하였고, PIBWIN 세균동정 방법으로 생리 생화학적 특성을 조사하여 확인한 결과 Pseudomonas sp. OME로 동정하였다. 여러 기질로 지방분해효소 생산을 조사한 결과 올리브유에서 6.1 U/ml의 생산력을 나타내었다. 물리적 인자인 배양시간, 온도. pH 및 올리브유와 효모 추출액의 영양인자에 의한 지방분해효소 생산 조건을 조사 하였다. 효소의 분비는 배양시간. 올리브유 와 효모 추출액의 농도에 강한 영향을 받았으며, RSM을 이용한 최적화는 이들 인자를 가지고 조사하였다. RSM을 이용한 지방분해효소 생산은 배양시간. 올리브유와 효모 추출액의 농도가 48 hr, 0.3 g, 및 0.9 ml에서 최적 생산조건을 나타냈다.

Keywords

References

  1. Arbige, M. V. and W. H. Pitcher. 1989. Industrial enzymology:a look towards the future. Trends in Biotechnol. 7,330-335. https://doi.org/10.1016/0167-7799(89)90032-2
  2. Beisson, F., A. Tiss, C. Rivière, and R. Verger. 2000. Methodsfor lipase detection and assay: a critical review. Eur. J. Lipid Sci. Technol. 133-153
  3. Bryant, T. N. 2004. PIBWin-software for probabilisticidentification. J. Appl. Microbiololgy 97, 1326-7. https://doi.org/10.1111/j.1365-2672.2004.02388.x
  4. Chandrika, L. P. and S. Fereidoon. 2005. Optimization ofextraction of phenolic compounds from wheat using responsesurface methodology. Food Chem. 93, 47-56. https://doi.org/10.1016/j.foodchem.2004.08.050
  5. Chen, F., T. Y. Cai, G. H. Zhao, X. J. Liao, L. Y. Guo, andX. S. Hu. 2005. Optimizing conditions for the purificationof crude octacosanol extract from rice bran wax by moleculardistillation analyzed using response surface methodology,J. Food. Eng. 70, 47-53. https://doi.org/10.1016/j.jfoodeng.2004.09.011
  6. Dey, G., G. A. Mitra, R. Banerjee, and B. R. Maiti. 2001.Enhanced production of amylase by optimization of nutritionalconstituents using response surface methodology.Biochem. Eng. J. 7, 227-231. https://doi.org/10.1016/S1369-703X(00)00139-X
  7. Dharmsthiti, S. and S. Luchai. 1999. Production, purificationand characterization of thermophilic lipase from Bacillus sp.THL027. FEMS Microbiol. Lett. 179, 241-246. https://doi.org/10.1111/j.1574-6968.1999.tb08734.x
  8. Ghosh, P. K., R. K. Saxena, R. Gupta, R. P. Yadav and S.Davidson. 1996. Microbial lipases: Production andapplications. Science Prog. 79, 19-157.
  9. Jaeger, K. E., S. Ransac, B. W. Dijkstra, C. Colson, M. vanHeuvel, and O. Misset. 1994. Bacterial lipases. FEMS Microbiol. Rev. 15, 29-63 https://doi.org/10.1111/j.1574-6976.1994.tb00121.x
  10. Kanlaykrit, W., K. Ishimatsu, M. Nakao, and S. Hayashida.1987. Characteristics of raw starch-digesting glucoamylasefrom thermophilic Rhizomucor pusilus. J. Ferment. Technol. 65,379-385. https://doi.org/10.1016/0385-6380(87)90133-6
  11. Kristo, E., C. G. Biliaderis, and N. Tzanetakis. 2003.Modelling of the acidification process and rheological propertiesof milk fermented with a yogurt starter culture usingresponse surface methodology. Food Chem. 83, 437-446. https://doi.org/10.1016/S0308-8146(03)00126-2
  12. Kumar, S. and T. Satyanarayana. 2001. Medium optimizationfor glucoamylase production by a yeast, Pichia subpelliculosaABWF 64, in submerged cultivation. World J. Microbiol. Biotechnol. 17, 83-87. https://doi.org/10.1023/A:1016699314244
  13. Lawerence, R. C., T. F. Fryer, and B. Reiter. 1967. Rapidmethod for the quantitative estimation of microbial lipases.Nature 213, 1264-1265. https://doi.org/10.1038/2131264a0
  14. Lotrakul, P. and S. Dharmsthiti. 1997. Purification and characterizationof lipase from Aeromonas sobria LP004. J. Biotechnol. 54, 113-120. https://doi.org/10.1016/S0168-1656(97)01696-9
  15. Macrae, A. R. and R. C. Hammond. 1985. Present and futureapplications of lipases. Biotechnol. Gen. Engin. Rev. 3, 193-217. https://doi.org/10.1080/02648725.1985.10647813
  16. Naka, Y. and T. Nakamura. 1992. The effects of serum albuminand related amino acids on pancreatic lipase and bilesalts inhibited microbial lipases. Biosci. Biotechno. Biochem.56, 1066-1070. https://doi.org/10.1271/bbb.56.1066
  17. Nielsen, T. 1985. Industrial application possibilities oflipase. Fat Sci. Technol. 87, 15-19.
  18. Palekar, A., P. T. Vasudevan, and S. Yan. 2000. Purificationof lipase: a review. Biocatal. Biotransform. 18, 177-200. https://doi.org/10.3109/10242420009015244
  19. Pandey, A., S. Benjamin, C. R. Soccol, P. Nigam, N. Kriegerand U. T. Soccol. 1999. The realm of microbial lipases inbiotechnology. Biotechnol. Appl. Biochem. 29, 119-131
  20. Park, Y. S., S. W. Kang, J. S. Lee, S. I. Hong, and S. W. Kim. 2002. Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental design. Appl. Microbiol. Biotechnol. 58, 761-766. https://doi.org/10.1007/s00253-002-0965-0
  21. Rao, J. L. U. M. and T. Satyanarayana. 2003. Statistical optimization of a high maltose-forming, hyperthermostable and Ca2+-independent a-amylase production by an extreme thermophile Geobacillus thermoleovorans using response surface methodology. J. Appl. Microbiol. 95, 712-718. https://doi.org/10.1046/j.1365-2672.2003.02036.x
  22. Seitz, E. W. 1974. Industrial applications of microbial lipases-A review. J. Am. Oil Chem. Soc. 51, 12-16. https://doi.org/10.1007/BF02545206
  23. Strobel, R. and G. Sullivan. 1999. Experimental design forimprovement of fermentation. In Manual of IndustrialMicrobiology and Biotechnology. In Demain, A. L. and J.E. Davies (eds.), pp. 80-93, Washington, ASM press.
  24. Sztajer, H., I. Maliszewska, and J. Wieczorek. 1988.Production of exogenous lipases by bacteria, fungi, andactinomycetes. Enzyme Microb. Technol. 10, 492-497. https://doi.org/10.1016/0141-0229(88)90027-0
  25. Vohra, A. and T. Satyanarayana. 2002. Statistical optimizatio n of the medium components by response surface methodology to enhance phytase production by Pichia anomala. Process Biochem. 37, 999-1004. https://doi.org/10.1016/S0032-9592(01)00308-9
  26. Wejse, P. L., K. Ingvorsen, and K. K. Mortensen. 2003.Xylanase production by a novel halophilic bacterium increased20-fold by response surface methodology. Enzyme Microb. Technol. 32, 721-727. https://doi.org/10.1016/S0141-0229(03)00033-4