DOI QR코드

DOI QR Code

지방분해효소 생산균 Pseudomonas sp. OME 의 분리 동정 및 배양조건 최적화

Isolation and Identification of Lipolytic Enzyme Producing Pseudomonas sp. OME and Optimization of Cultural Conditions

  • Kumar, G.Satheesh (Department of Microbiology, Acharya Nagarjuna University) ;
  • Reddy, T. Kiran (Department of Virology, Sri Venkateswara University) ;
  • Madhavi, B. (Department of Virology, Sri Venkateswara University) ;
  • Teja, P.Charan (Department of Virology, Sri Venkateswara University) ;
  • Chandra, M.Subhosh (Department of Biotechnology, College of Natural Resources and Life Science, Dong-a University) ;
  • Choi, Yong-Lark (Department of Biotechnology, College of Natural Resources and Life Science, Dong-a University)
  • 투고 : 2010.02.16
  • 심사 : 2010.04.15
  • 발행 : 2010.05.31

초록

폐식용유에서 지방분해효소를 생산하는 세균을 분리하였고, PIBWIN 세균동정 방법으로 생리 생화학적 특성을 조사하여 확인한 결과 Pseudomonas sp. OME로 동정하였다. 여러 기질로 지방분해효소 생산을 조사한 결과 올리브유에서 6.1 U/ml의 생산력을 나타내었다. 물리적 인자인 배양시간, 온도. pH 및 올리브유와 효모 추출액의 영양인자에 의한 지방분해효소 생산 조건을 조사 하였다. 효소의 분비는 배양시간. 올리브유 와 효모 추출액의 농도에 강한 영향을 받았으며, RSM을 이용한 최적화는 이들 인자를 가지고 조사하였다. RSM을 이용한 지방분해효소 생산은 배양시간. 올리브유와 효모 추출액의 농도가 48 hr, 0.3 g, 및 0.9 ml에서 최적 생산조건을 나타냈다.

Lipolytic enzyme-producing bacteria were isolated from edible oil mill effluents on tributyrin agar medium. The shake-flask-scale studies yielded a promising isolate and it was identified as Pseudomonas sp. An OME using various microbiological observations such as cultural, microscopic, and biochemical tests was undertaken and confirmed using PIBWIN bacterial identification software. Lipolytic enzyme production was screened with oils such as sunflower, caster, coconut, tributyrin, and olive. Amongst these, olive oil showed an increased lipase production 6.1 U/ml. In view of the highest lipolytic enzyme production with olive oil, further optimizations were carried out using olive oil as a carbon source. Lipolytic enzyme production was optimized by a conventional 'one variable at a time' approach and the significant factors were further analyzed statistically using response surface methodology (RSM). The effect of physical factors such as incubation time, temperature, initial medium pH, and nutritional factors such as concentration of olive oil and yeast extract were examined for lipase production. Lipolytic enzyme secretion was strongly affected by three variables (incubation time, concentration of yeast extract and olive oil). Therefore, the interaction of these three factors was further optimized using response surface methodology. The optimized conditions of lipase production using response surface methodology yielded a maximum of 9.62 U/ml with optimum conditions for incubation, yeast extract and olive oil concentrations were found to be 48 hr, 0.3 g. and 0.9 ml. respectively.

키워드

참고문헌

  1. Arbige, M. V. and W. H. Pitcher. 1989. Industrial enzymology: a look towards the future. Trends in Biotechnol. 7, 330-335. https://doi.org/10.1016/0167-7799(89)90032-2
  2. Beisson, F., A. Tiss, C. Rivière, and R. Verger. 2000. Methods for lipase detection and assay: a critical review. Eur. J. Lipid Sci. Technol. 133-153
  3. Bryant, T. N. 2004. PIBWin-software for probabilistic identification. J. Appl. Microbiololgy 97, 1326-7. https://doi.org/10.1111/j.1365-2672.2004.02388.x
  4. Chandrika, L. P. and S. Fereidoon. 2005. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 93, 47-56. https://doi.org/10.1016/j.foodchem.2004.08.050
  5. Chen, F., T. Y. Cai, G. H. Zhao, X. J. Liao, L. Y. Guo, and X. S. Hu. 2005. Optimizing conditions for the purification of crude octacosanol extract from rice bran wax by molecular distillation analyzed using response surface methodology, J. Food. Eng. 70, 47-53. https://doi.org/10.1016/j.jfoodeng.2004.09.011
  6. Dey, G., G. A. Mitra, R. Banerjee, and B. R. Maiti. 2001. Enhanced production of amylase by optimization of nutritional constituents using response surface methodology. Biochem. Eng. J. 7, 227-231. https://doi.org/10.1016/S1369-703X(00)00139-X
  7. Dharmsthiti, S. and S. Luchai. 1999. Production, purification and characterization of thermophilic lipase from Bacillus sp. THL027. FEMS Microbiol. Lett. 179, 241-246. https://doi.org/10.1111/j.1574-6968.1999.tb08734.x
  8. Ghosh, P. K., R. K. Saxena, R. Gupta, R. P. Yadav and S. Davidson. 1996. Microbial lipases: Production and applications. Science Prog. 79, 19-157.
  9. Jaeger, K. E., S. Ransac, B. W. Dijkstra, C. Colson, M. van Heuvel, and O. Misset. 1994. Bacterial lipases. FEMS Microbiol. Rev. 15, 29-63 https://doi.org/10.1111/j.1574-6976.1994.tb00121.x
  10. Kanlaykrit, W., K. Ishimatsu, M. Nakao, and S. Hayashida. 1987. Characteristics of raw starch-digesting glucoamylase from thermophilic Rhizomucor pusilus. J. Ferment. Technol. 65, 379-385. https://doi.org/10.1016/0385-6380(87)90133-6
  11. Kristo, E., C. G. Biliaderis, and N. Tzanetakis. 2003. Modelling of the acidification process and rheological properties of milk fermented with a yogurt starter culture using response surface methodology. Food Chem. 83, 437-446. https://doi.org/10.1016/S0308-8146(03)00126-2
  12. Kumar, S. and T. Satyanarayana. 2001. Medium optimization for glucoamylase production by a yeast, Pichia subpelliculosa ABWF 64, in submerged cultivation. World J. Microbiol. Biotechnol. 17, 83-87. https://doi.org/10.1023/A:1016699314244
  13. Lawerence, R. C., T. F. Fryer, and B. Reiter. 1967. Rapid method for the quantitative estimation of microbial lipases. Nature 213, 1264-1265. https://doi.org/10.1038/2131264a0
  14. Lotrakul, P. and S. Dharmsthiti. 1997. Purification and characterization of lipase from Aeromonas sobria LP004. J. Biotechnol. 54, 113-120. https://doi.org/10.1016/S0168-1656(97)01696-9
  15. Macrae, A. R. and R. C. Hammond. 1985. Present and future applications of lipases. Biotechnol. Gen. Engin. Rev. 3, 193-217. https://doi.org/10.1080/02648725.1985.10647813
  16. Naka, Y. and T. Nakamura. 1992. The effects of serum albumin and related amino acids on pancreatic lipase and bile salts inhibited microbial lipases. Biosci. Biotechno. Biochem. 56, 1066-1070. https://doi.org/10.1271/bbb.56.1066
  17. Nielsen, T. 1985. Industrial application possibilities of lipase. Fat Sci. Technol. 87, 15-19.
  18. Palekar, A., P. T. Vasudevan, and S. Yan. 2000. Purification of lipase: a review. Biocatal. Biotransform. 18, 177-200. https://doi.org/10.3109/10242420009015244
  19. Pandey, A., S. Benjamin, C. R. Soccol, P. Nigam, N. Krieger and U. T. Soccol. 1999. The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 29, 119-131
  20. Park, Y. S., S. W. Kang, J. S. Lee, S. I. Hong, and S. W. Kim. 2002. Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental design. Appl. Microbiol. Biotechnol. 58, 761-766. https://doi.org/10.1007/s00253-002-0965-0
  21. Rao, J. L. U. M. and T. Satyanarayana. 2003. Statistical optimization of a high maltose-forming, hyperthermostable and Ca2+-independent a-amylase production by an extreme thermophile Geobacillus thermoleovorans using response surface methodology. J. Appl. Microbiol. 95, 712-718. https://doi.org/10.1046/j.1365-2672.2003.02036.x
  22. Seitz, E. W. 1974. Industrial applications of microbial lipases- A review. J. Am. Oil Chem. Soc. 51, 12-16. https://doi.org/10.1007/BF02545206
  23. Strobel, R. and G. Sullivan. 1999. Experimental design for improvement of fermentation. In Manual of Industrial Microbiology and Biotechnology. In Demain, A. L. and J. E. Davies (eds.), pp. 80-93, Washington, ASM press.
  24. Sztajer, H., I. Maliszewska, and J. Wieczorek. 1988. Production of exogenous lipases by bacteria, fungi, and actinomycetes. Enzyme Microb. Technol. 10, 492-497. https://doi.org/10.1016/0141-0229(88)90027-0
  25. Vohra, A. and T. Satyanarayana. 2002. Statistical optimizatio n of the medium components by response surface methodology to enhance phytase production by Pichia anomala. Process Biochem. 37, 999-1004. https://doi.org/10.1016/S0032-9592(01)00308-9
  26. Wejse, P. L., K. Ingvorsen, and K. K. Mortensen. 2003. Xylanase production by a novel halophilic bacterium increased 20-fold by response surface methodology. Enzyme Microb. Technol. 32, 721-727. https://doi.org/10.1016/S0141-0229(03)00033-4