DOI QR코드

DOI QR Code

Antiobesity Effect of the Bacillus subtilis KC-3 Fermented Soymilk in 3T3-L1 Adipocytes

3T3-L1 지방세포에서 Bacillus subtilis KC-3 발효두유의 항비만 효과

  • Kim, Ji-Young (Dept. of Food Science and Nutrition, Pusan National University) ;
  • Jeong, Jung-Eun (Dept. of Food Science and Nutrition, Pusan National University) ;
  • Moon, Suk-Hee (Dept. of Subdivision of Food Nutrition & Bakery, Kyungnam College of Information and Technology) ;
  • Park, Kun-Young (Dept. of Food Science and Nutrition, Pusan National University)
  • 김지영 (부산대학교 식품영양학과) ;
  • 정은정 (부산대학교 식품영양학과) ;
  • 문숙희 (경남정보대학 식품영양제과제빵계열) ;
  • 박건영 (부산대학교 식품영양학과)
  • Received : 2010.04.19
  • Accepted : 2010.04.26
  • Published : 2010.08.31

Abstract

The antiobesity effect of soymilks fermented with Bacillus subtilis KC-3 (KCCM 42923) from cheonggukjang was compared with other sources of B. subtilis KCCM 11316 and B. subtilis MYCO. The antiobesity effect was investigated by measuring the release of leptin, Oil red O staining, glycerol secretions and adipogenic transcription factor by reverse transcription-polymerase chain reaction (RT-PCR) in the 3T3-L1 adipocytes. Fermented soymilk with B. subtilis KC-3 (F-KC) led to decrease levels of leptin secretion and increase levels of glycerol secretion in the cells. In addition, F-KC reduced contents of Oil red O dye in the 3T3-L1 adipocytes. Also, mRNA expression levels of both SREBP-1c (sterol regulatory element-binding protein 1-c) and PPAR-$\gamma$ (peroxisome proliferator-activated receptor-$\gamma$), which are adipogenic transcription factor, in cells treated with F-KC were markedly down regulated. These results demonstrate that the Bacillus subtillis fermented soymilk (F-KC) decreased lipid content in 3T3-L1 adipocytes by inhibiting lipogenesis. All B. subtilis fermented soymilks had shown antiobesity activities, however, F-KC exhibited the strongest antiobesity effect in the 3T3-L1 adipocytes. Our study suggests that especially F-KC increased the potential of antiobesity effects.

3T3-L1 지방세포에서 상업용 Bacillus subtilis 균주와 순창 민속마을 전통 청국장에서 분리한 Bacillus subtilis KC-3(KCCM 42923) 균주를 이용해 두유를 발효시키고 이를 발효하지 않는 두유와 지방 생성 억제 효과를 비교하였다. 렙틴의 분비량은 B. subtilis MYCO 10001 발효두유(F-MYCO)와 B. subtilis KC-3 발효두유(F-KC)에서 유의적으로 감소하였다. 이러한 지방 생성 억제 효과가 지방의 축적과도 관련이 있는지 알아보기 위하여 지방구를 관찰한 결과 두유와 발효두유 모두에서 축적된 지방의 양이 감소했고 그중 F-KC는 유의적으로 감소하여(p<0.05) 지방의 생성과 축적이 억제된 것을 알 수 있었다. 지방축적의 감소가 지방 분해와도 관련이 있는지 조사하기 위하여 글리세롤의 분비량을 측정하였는데 발효되지 않은 두유의 글리세롤 분비 정도는 control과 비슷하였으나 발효두유의 모든 군에서는 글리세롤의 분비량이 증가하였고 특히 F-KC에서 글리세롤 분비량이 유의적으로 증가하였다. 또한 F-KC의 지방 축적 감소가 지방 생성 억 제로부터 기인된 것인지 조사하기 위하여 지방생성에 중추적 역할을 맡고 있는 전사인자인 $PPAR{\gamma}$와 SREBP-1c의 mRNA 발현을 확인한 결과 두유나 다른 발효두유에 비하여 F-KC에서 이들 유전자 발현이 감소한 것으로 나타났다. 따라서 B. subtilis KC-3에 의해 발효된 두유의 항비만 효과는 지방 생성의 중요한 전사인자인 $PPAR{\gamma}$와 SREBP-1c의 발현 억제에 기인한 것으로서 그 결과 지방의 생성을 억제하고 지방 축적을 효과적으로 감소 시키는 것으로 보인다.

Keywords

References

  1. Kopelman PG. 1994. Causes and consequences of obesity.Med Int 22: 385-388.
  2. Lew EA. 1985. Mortality and weight: insured lives and the American Cancer Society studies. Ann Intern Med 103:1024-1029. https://doi.org/10.7326/0003-4819-103-6-1024
  3. Kim SH, Yang JL, Song YS. 1999. Physiological functions of Chungkukjang. Food Ind Nutr 4: 40-46.
  4. Lee JO, Ha SD, Kim AJ, Yuh CS, Bang IS, Park SH. 2005.Industrial application and physiological function of Chungkukjang.Food Sci Ind 38: 69-78.
  5. Lee KA, Jang JO, Yoon HK, Kim MS. 2007. Antithrombotic activities of Cheongkookjang and Cheongkookjang fermented with green tea or mugwort. Korean J Microbiol43: 298-303.
  6. Watanabe S, Haba R, Terashima K, Arai Y, Miura T, ChibaD, Takamatsu M. 2000. Antioxidant activity of soya hypocotyl tea in humans. Biofactors 12: 227-232. https://doi.org/10.1002/biof.5520120135
  7. Verdrengh M, Jonsson IM, Holmdahl R, Tarkowski A. 2003.Genistein as an anti-inflammatory agent. Inflamm Res 52:341-346. https://doi.org/10.1007/s00011-003-1182-8
  8. Shon DH. 1997. Nutritional and bioactive components of soymilk and cow's milk (a review). Korea Soybean Digest14: 66-76.
  9. Lee JE, Lee SY. 2001. Growth characteristics of Bifidobacteria and quality characteristics of soy yogurt prepared with different proteolytic enzymes and starter culture. Korean J Food Sci Technol 33: 603-610.
  10. Seo HR, Kim JY, Kim JH, Park KY. 2009. Identification of Bacillus cereus in a Chungkukjang that showed high anticancer effects against AGS human gastric adenocarcinoma cells J Med Food 12: 1274-1280. https://doi.org/10.1089/jmf.2009.0081
  11. Seo HR, Kim JY, Bae GH, Park KY. 2009. Antiproliferative effect of Bacillus subtilis fermented soy milk in AGS human gastric adenocarcinoma cells. J Korean Soc Food SciNutr 38: 644-648. https://doi.org/10.3746/jkfn.2009.38.5.644
  12. Frost SC, Lane MD. 1985. Evidence for the involvement of vicinal sulfhydryl groups in insulin-activated hexose transport by 3T3-L1 adipocytes. J Biol Chem 260: 2646-2652.
  13. Mac Dougald OA, Hwang CS, Fan H, Lane MD. 1995.Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes. Proc Natl Acad Sci USA 20: 9034-9037.
  14. Green H, Kehinde O. 1975. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 5: 19-27. https://doi.org/10.1016/0092-8674(75)90087-2
  15. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. 1995.Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science269: 546-549. https://doi.org/10.1126/science.7624778
  16. Palous A, Serra F, Bonet ML, Pico C. 2000. Obesity: molecular bases of a multifactorial problem. Eur J Nutr 3: 127-144.
  17. Norman D, Isidori AM, Frajese V, Caprio M, Chew SL,Grossman AB, Clark AJ, Michael Besser G, Fabbri A. 2003.ACTH and alpha-MSH inhibit leptin expression and secretion in 3T3-L1 adipocytes: model for a central-peripheral melanocortin-leptin pathway. Mol Cell Endocrinol 200:99-109. https://doi.org/10.1016/S0303-7207(02)00410-0
  18. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, ZhangY, Fei H, Kim S, Lallone R, Ranganathan S. 1995. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1: 1155-1161. https://doi.org/10.1038/nm1195-1155
  19. Havel PJ. 2000. Role of adipose tissue in body-weight regulation:mechanisms regulating leptin production and energy balance. Proc Nutr Soc 59: 359-371. https://doi.org/10.1017/S0029665100000410
  20. Slavin BG, Ong JM, Kern PA. 1994. Hormonal regulation of hormone-sensitive lipase activity and mRNA levels in isolated rat adipocytes. J Lipid Res 35: 1535-1541.
  21. Jo JW, Hur SH, Han YS, Kim JY. 2009. Isolation of lipase producing Bacillus subtilis and some characteristics of the enzyme. J Appl Biol Chem 52: 151-156. https://doi.org/10.3839/jabc.2009.026
  22. Park JY, Kim JB. 2002. Molecular insights into fat cell differentiation and functional roles of adipocytokines. J Korean Soc Endocrinol 17: 1-9.
  23. Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, MilstoneDS, Spiegelman BM, Mortensen RM. 1999. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4: 611-617. https://doi.org/10.1016/S1097-2765(00)80211-7
  24. Horton JD, Goldstein JL, Brown MS. 2002. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109: 1125-1131. https://doi.org/10.1172/JCI0215593
  25. Fajas L, Schoonjans K, Gelman L, Kim JB, Najib J, MartinG, Fruchart JC, Briggs M, Spiegelman BM, Auwerx J. 1999.Regulation of peroxisome proliferator-activated receptor $\gamma$ expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implicationsfor adipocyte differentiation and metabolism. Mol Cell Biol 19: 5495-5503. https://doi.org/10.1128/MCB.19.8.5495
  26. Kim JB, Spiegelman BM. 1996. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 10: 1096-1107. https://doi.org/10.1101/gad.10.9.1096
  27. Tsai TY, Chu LH, Lee CL, Pan TM. 2009. Atherosclerosispreventing activity of lactic acid bacteria-fermented milksoymilk supplemented with Momordica charantia. J Agric Food Chem 57: 2065-2071. https://doi.org/10.1021/jf802936c

Cited by

  1. Anti-Obesity Effect of Crataegus Fructus Extract from Chinese Cultivation vol.21, pp.11, 2011, https://doi.org/10.5352/JLS.2011.21.11.1586
  2. Anti-obesity Effects of Black Bean Chungkugjang Extract in 3T3-L1 Adipocytes and Obese Mice Induced by High Fat Diet vol.40, pp.9, 2011, https://doi.org/10.3746/jkfn.2011.40.9.1235
  3. 김치에서 분리한 Lactobacillus plantarum K6의 생리적 특성 및 비만억제효과 vol.35, pp.4, 2010, https://doi.org/10.22424/jmsb.2017.35.4.221
  4. Enterococcus faecium R0026 Combined with Bacillus subtilis R0179 Prevent Obesity-Associated Hyperlipidemia and Modulate Gut Microbiota in C57BL/6 Mice vol.31, pp.2, 2010, https://doi.org/10.4014/jmb.2009.09005