References
- Bulpitt, P., Aeschilmann, D., 1999. New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J. Biomed. Mater. Res. Part A. 47(2), 152-169. https://doi.org/10.1002/(SICI)1097-4636(199911)47:2<152::AID-JBM5>3.0.CO;2-I
- Charlot, A., Heyraud, A., Guenot, P., Rinaudo, M., Auzely-Velty, R., 2006. Controlled synthesis and inclusion ability of a hyaluronic acid derivative bearing β-cyclodextrin molecules. Biomacromolecules. 7(3), 907-913. https://doi.org/10.1021/bm0507094
- Duncan, R., 2003. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2(5), 347-360. https://doi.org/10.1038/nrd1088
- Eliaz, R.E., Szoka, F.C.Jr., 2001. Liposome-encapsulated doxorubicin targeted to CD44: A strategy to kill CD44-overexpressing tumor cells. Cancer Res. 61(6), 2592-2601.
- Gotte, M., Yip, G.W., 2006. Heparanase, hyaluronan, and CD44 in cancers: A breast carcinoma perspective. Cancer Res. 66: (21), 10233-10237. https://doi.org/10.1158/0008-5472.CAN-06-1464
- Hamasaki, K., Ikeda, H., Nakamura, A., Ueno, A., Toda, F., Suzuki, I., Osa, T., 1993. Fluorescent sensors of molecular recognition. Modified cyclodextrins capable of exhibiting guest-responsive twisted intramolecular charge transfer fluorescence. J. Am. Chem. Soc. 115(12), 5035-5040. https://doi.org/10.1021/ja00065a012
- Harada, A., 1996. Preparation and structures of supramolecules between cyclodextrins and polymers. Coord. Chem. Rev. 148, 115-133. https://doi.org/10.1016/0010-8545(95)01157-9
- Harada, A., Kamachi, M., 1990. Complex formation between poly (ethylene glycol) and α-cyclodextrin. Macromolecules. 23(10), 2821-2823. https://doi.org/10.1021/ma00212a039
- Higashi, T., Hirayama, F., Misumi, S., Motoyama, K., Arima, H., Uekama, K., 2009. Polypseudorotaxane formation of randomly- pegylated insulin with cyclodextrins: slow release and resistance to enzymatic degradation. Chem. Pharm. Bull. 57(5), 541-544. https://doi.org/10.1248/cpb.57.541
- Higashi, T., Hirayama, F., Misumi, S., Arima, H., Uekama, K., 2008. Design and evaluation of polypseudorotaxanes of pegylated insulin with cyclodextrins as sustained release system. Biomaterials. 29(28), 3866-3871. https://doi.org/10.1016/j.biomaterials.2008.06.019
- Higashi, T., Hirayama, F., Arima, H., Uekama, K., 2007. Polypseudorotaxanes of pegylated insulin with cyclodextrins: Application to sustained release system. Bioorg. Med. Chem. Lett. 17(7), 1871-1874. https://doi.org/10.1016/j.bmcl.2007.01.029
- Lapcik, L.Jr., Lapcik, L., Smedt, S.D., Demeester, J., Chabrecek, P., 1998. Hyaluronan: preparation, structure, properties, and applications. Chem. Rev. 98(8), 2663-2684. https://doi.org/10.1021/cr941199z
- Lee, H., Lee, K., Park, T.G., 2008. Hyaluronic acid-paclitaxel conjugate micelles: Synthesis, characterization and antitumor activity. Bioconjugate Chem. 19(6), 1319-1325. https://doi.org/10.1021/bc8000485
- Loftsson, T., Brewster, M.E., 1996. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85(10), 1017-1025. https://doi.org/10.1021/js950534b
- Luo, Y., Prestwich, G.D., 1999. Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate. Bioconjugate Chem. 10(5), 755-763. https://doi.org/10.1021/bc9900338
- Szejtli, J., 1998. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98(5), 1743-1754. https://doi.org/10.1021/cr970022c
- Uekama, K., Hirayama, F., Irie, T., 1998. Cyclodextrin drug carrier systems. Chem. Rev. 98(5), 2045-2076. https://doi.org/10.1021/cr970025p
- Veronese, F.M., Paust, G., 2005. Pegylation, successful approach to drug delivery. Drug Discov. Today. 10(21), 1451-1458. https://doi.org/10.1016/S1359-6446(05)03575-0
- Yadav, A.K., Mishra, P., Agarwal, G.P., 2008. An insight on hyaluronic acid in drug targeting and drug delivery. J. Drug Target. 16(2), 91-107. https://doi.org/10.1080/10611860701794296