DOI QR코드

DOI QR Code

Pharmacological Profile of KR-31125, an Orally Active AT1 Receptor Antagonist

안지오텐신 수용체 리간드 KR-31125의 생체 내 활성에 관한 연구

  • Lee, Sung-Hou (Department of Biomedical Technology, College of Engineering, Sangmyung University)
  • 이승호 (상명대학교 공과대학 의생명공학과)
  • Received : 2010.02.24
  • Accepted : 2010.07.11
  • Published : 2010.07.30

Abstract

In vivo studies of KR-31125 (2-butyl-5-dimethoxymethyl-6-phenyl-7-methyl-3-[[2'-(1H-tetrazol-5-yl) biphenyl-4-yl]methyl]-3H-imidazo[4,5-b]pyridine) were performed in pithed rats, conscious angiotensin II (AII) challenged normotensive rats, renal hypertensive rats (RHRs) and furosemide-treated beagle dogs. KR-31125 induced a non-parallel right shift in the dose-pressor response curve to AII ($ID_{50}$: 0.095 mg/kg) with a dose-dependent reduction in the maximum responses in pithed rats. Compared to losartan, this antagonistic effect was about 18 times more potent, presenting competitive antagonism. Other agonists such as norepinephrine and vasopressin did not alter the responses induced by KR-31125. Orally administered KR-31125 had no agonistic effect and dose-dependently inhibited the pressor response to AII with a slightly weaker potency ($ID_{50}$: 0.25 and 0.47 mg/kg, respectively) in the AII-challenged normotensive rat model, but with a more rapid onset of action than losartan (time to $E_{max}$: 30 min for KR-31125 and 6 hr for losartan). KR-31125 produced a dose-dependent antihypertensive effect with a higher potency than losartan in RHRs, and these effects were confirmed in furosemide-treated dogs where they presented a dose-dependent and long-lasting (>8 hr) antihypertensive effect with a rapid onset of action (time to $E_{max}$: 2-4 hr), as well as a 20-fold greater potency than losartan. These results suggest that KR-31125 is a potent, orally active $AT_1$ receptor antagonist that can be applied to the development of new diagnostic and research tools as an added exploratory potential of $AT_1$ receptor antagonist.

피리딜 이미다졸 시리즈의 비펩타이드 안지오텐신 수용체 리간드로 새롭게 개발된 KR-31125에 대한 생체 내활성을 동물모델에서 검증하였다. 척수장애 동물모델에서 KR-31125는 비대칭 농도의존적으로 로자탄보다 18배 이상의 경쟁적인 혈압강하 효과를 나타내었으며, 기타 수용체 촉진제들의 영향을 받지 않았다. 안지오텐신으로 유도된 정상혈압 쥐모델에서는 대조화합물인 로자탄과 비교하여 경구효과는 동등하였으나 더 빠른 초기효과가 관찰되었다. 또한 신성고혈압 쥐모델에서 KR-31125는 로자탄보다 3배 이상의 지속형 혈압강하 효과를 나타내었고, 이뇨제를 투여하여 레닌을 활성화시킨 개실험 모델에서 KR-31125는 로자탄보다 20배 이상의 지속적인 경구혈압강하 효과를 나타내었다. 이러한 KR-31125의 생체 내 활성특징은 대사물질을 통하여 효과를 발휘하는 로자탄과 달리 동일물질의 효과에 의한 것으로 고혈압 및 혈관질환과 깊은 관련이 있는 안지오텐신 조절시스템에 대한 세포영상, 비침투성 진단등의 도구물질로서 가능성이 높을 것으로 판단된다.

Keywords

References

  1. Baker, J. G., R. Middleton, L. Adams, L. T. May, S. J. Briddon, B. Kellam, and S. J. Hill. Influence of fluorophore and linker composition on the pharmacology of fluorescent adenosine A receptor ligands. 2010. Br. J. Pharmacol. 159, 772-786. https://doi.org/10.1111/j.1476-5381.2009.00488.x
  2. Burnier, M. 2001. Angiotensin II type 1 receptor blockers. Circulation. 103, 904-912. https://doi.org/10.1161/01.CIR.103.6.904
  3. Cazes, M., D. Provost, A. Versigny, and A. Cloarec. 1995. In vivo pharmacological characterization of UP 269-6, a novel nonpeptide angiotensin II receptor antagonist. Eur. J. Pharmacol. 284, 157-170. https://doi.org/10.1016/0014-2999(95)00395-2
  4. Chiu, A. T., D. E. McCall, W. A. Price, P. C. Wong, D. J. Carini, J. V. Duncia, R. R. Wexler, S. E. Yoo, A. L. Johnson, and P. B. Timmermans. 1990. Nonpeptide angiotensin II receptor antagonists. VII. Cellular and biochemical pharmacology of DuP 753, an orally active antihypertensive agent. J. Pharmacol. Exp. Ther. 252, 711-718.
  5. Dahlof, B., S. E. Keller, L. Makris, A. I. Goldberg, C. S. Sweet, and N. Y. Lim. 1995. Efficacy and tolerability of losartan potassium and atenolol in patients with mild to moderate essential hypertension. Am. J. Hypertens. 8, 578-583. https://doi.org/10.1016/0895-7061(95)00081-Y
  6. Gillespie, J. S. and T. C. Muir. 1967. A method of stimulating the complete sympathetic outflow from the spinal cord to blood vessels in the pithed rat. Br. J. Pharmacol. Chemother. 30, 78-87. https://doi.org/10.1111/j.1476-5381.1967.tb02114.x
  7. Griendling, K. K., B. Lassegue, T. J. Murphy, and R. W. Alexander. 1994. Angiotensin II receptor pharmacology. Adv. Pharmacol. 28, 269-306. https://doi.org/10.1016/S1054-3589(08)60498-6
  8. Lee, B. H., H. W. Seo, K. J. Kwon, S. E. Yoo, and H. S. Shin. 1999. In vivo pharmacologic profile of SK-1080, an orally active nonpeptide AT1-receptor antagonist. J. Cardiovasc. Pharmacol. 33, 375-382. https://doi.org/10.1097/00005344-199903000-00005
  9. Lee, B. H., S. E. Yoo, and H. S. Shin. 1998. Hemodynamic profile of SKP-450, a new potassium-channel activator. J. Cardiovasc. Pharmacol. 31, 85-94. https://doi.org/10.1097/00005344-199801000-00013
  10. Mallion, J. M. and A. I. Goldberg. 1996. Global efficacy and tolerability of losartan, an angiotensin II subtype 1-receptor antagonist, in the treatment of hypertension. Blood Press Suppl. 2, 82-86.
  11. Marchesi, C., P. Paradis, and E. L. Schiffrin. 2008. Role of the renin-angiotensin system in vascular inflammation. Trends Pharmacol. Sci. 29, 367-374.
  12. Mathews, W. B., S. E. Yoo, S. H. Lee, U. Scheffel, P. A. Rauseo, T. G. Zober, G. Gocco, K. Sandberg, H. T. Ravert, R. F. Dannals, and Z. Szabo. 2004. A novel radioligand for imaging the AT1 angiotensin receptor with PET. Nucl. Med. Biol. 31, 571-574. https://doi.org/10.1016/j.nucmedbio.2003.10.014
  13. May, L. T., S. J. Briddon, and S. J. Hill. Antagonist selective modulation of adenosine A1 and A3 receptor pharmacology by the food dye Brilliant Black BN: evidence for allosteric interactions. 2010. Mol. Pharmacol. 77, 678-686. https://doi.org/10.1124/mol.109.063065
  14. Timmermans, P. B., P. C. Wong, A. T. Chiu, W. F. Herblin, P. Benfield, D. J. Carini, R. J. Lee, R. R. Wexler, J. A. Saye, and R. D. Smith. 1993. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol. Rev. 45, 205-251.
  15. Wexler, R. R., W. J. Greenlee, J. D. Irvin, M. R. Goldberg, K. Prendergast, R. D. Smith, and P. B. Timmermans. 1996. Nonpeptide angiotensin II receptor antagonists: the next generation in antihypertensive therapy. J. Med. Chem. 39, 625-656. https://doi.org/10.1021/jm9504722
  16. Wong, P. C., S. D. Hart, J. V. Duncia, and P. B. Timmermans. 1991. Nonpeptide angiotensin II receptor antagonists. Studies with DuP 753 and EXP3174 in dogs. Eur. J. Pharmacol. 202, 323-330. https://doi.org/10.1016/0014-2999(91)90274-T
  17. Wong, P. C., W. A. Price, A. T. Chiu, J. V. Duncia, D. J. Carini, R. R. Wexler, A. L. Johnson, and P. B. Timmermans. 1990. Nonpeptide angiotensin II receptor antagonists. VIII. Characterization of functional antagonism displayed by DuP 753, an orally active antihypertensive agent. J. Pharmacol. Exp. Ther. 252, 719-725.
  18. Wong, P. C., W. A. Price, Jr., A. T. Chiu, J. V. Duncia, D. J. Carini, R. R. Wexler, A. L. Johnson, and P. B. Timmermans. 1991. In vivo pharmacology of DuP 753. Am. J. Hypertens. 4, 288S-298S. https://doi.org/10.1093/ajh/4.3.288
  19. Wong, P. C., W. A. Price, Jr., A. T. Chiu, J. V. Duncia, D. J. Carini, R. R. Wexler, A. L. Johnson, and P. B. Timmermans. 1990. Nonpeptide angiotensin II receptor antagonists. XI. Pharmacology of EXP3174: an active metabolite of DuP 753, an orally active antihypertensive agent. J. Pharmacol. Exp. Ther. 255, 211-217.
  20. Xia, J., E. Seckin, Y. Xiang, M. Vranesic, W. B. Mathews, K. Hong, D. A. Bluemke, L. O. Lerman, and Z. Szabo. 2008. Positron-emission tomography imaging of the angiotensin II subtype 1 receptor in swine renal artery stenosis. Hypertension 51, 466-473. https://doi.org/10.1161/HYPERTENSIONAHA.107.102715
  21. Zober, T. G., M. E. Fabucci, W. Zheng, P. R. Brown, E. Seckin, W. B. Mathews, K. Sandberg, and Z. Szabo. 2008. Chronic ACE inhibitor treatment increases angiotensin type 1 receptor binding in vivo in the dog kidney. Eur. J. Nucl. Med. Mol. Imaging. 35, 1109-1116. https://doi.org/10.1007/s00259-007-0667-z
  22. Zober, T. G., W. B. Mathews, E. Seckin, S. E. Yoo, J. Hilton, J. Xia, K. Sandberg, H. T. Ravert, R. F. Dannals, and Z. Szabo. 2006. PET Imaging of the AT1 receptor with [11C]KR31173. Nucl. Med. Biol. 33, 5-13. https://doi.org/10.1016/j.nucmedbio.2005.08.005

Cited by

  1. Toxicity of redLiriope platyphyllamanufactured by steaming process on liver and kidney organs of ICR mice vol.28, pp.4, 2012, https://doi.org/10.5625/lar.2012.28.4.229