References
- A. Arhangel'skii, The star method, new classes of spaces, and countable compactness, Soviet Math. Dokl., 21 (1980), No. 2, 550-554.
- A. V. Arhangel'skii, Spaces of functions in the topology of pointwise convergence and compact spaces , Uspekhi Mat. Nauk, 39 (1984), No. 5, 11-50. (in Russian)
- A. V. Arhangel'skii, Compactness, Contemporary Problems in Mathematics. Fundamental Directions. General Topology - 2 Moscow, WINITI Publ. (1989) 5-128 (in Russian); English translation: Encyclopedia of Mathematical Sciences. General Topology II, Springer 1996.
- A. Arhangel'skii, General topology II, Encyclopedia of Mathematical Sciences, 50, Springer-Verlag, Berlin, 1996.
- R. W. Bagley, E. H. Connel and J. D. McKnight, On properties characterizing pseudocompact spaces, Proc. Amer. Math. Soc. 9 (1958) 500-506. https://doi.org/10.1090/S0002-9939-1958-0097043-2
- M. Bonanzinga, Star-Lindelof and absolutely star-Lindelof spaces, Questions Answers Gen. Topology, 16 (1998), 79-104.
- J. Cao, J. Kim, T. Nogura and Y. Song, Cardinal invariants related to star covering properties, Topology Proc., 26 (2001-2002), No. 1, 83-96.
- M.H.Cho and J. Kim, Topological operations of iterated star-covering properties, Bull. Korean Math. Soc., 40 (2003), 727-731. https://doi.org/10.4134/BKMS.2003.40.4.723
- E. van Douwen, G. Reed, A. Roscoe and I. Tree, Star covering properties, Topology Appl., 39 (1991), 71-103. https://doi.org/10.1016/0166-8641(91)90077-Y
- R. Engelking, General Topology, Revised and completed edition, Heldermann Verlag, Berlin, 1989.
- W. M. Fleishman, A new extension of countable compactness. Fund. Math., 67 (1970), 1-9. https://doi.org/10.4064/fm-67-1-1-9
- L. Gillman and M. Jerison, Rings of continuous functions, Princeton, 1960.
- G. R. Hiremath, On star with Lindelof center property, J. Indian Math. Soc., 59 (1993), 227-242.
- S. Ikenaga, Topological concepts between Lindelof and Pseudo-Lindelof, Research Reports of Nara National College of Technology, 26 (1990), 103-108.
- S. Ikenaga and T. Tani, On a topological concept between countable, compactness and pseudocompactness, Research Reports of Numazu Technical College, 15 (1980). 139-142.
- J. Kim, Iterated starcompact topological spaces, Appl. Gen. Topol., 5 (2004), 1-10. https://doi.org/10.4995/agt.2004.1991
- M. V. Matveev, On properties similar to countable compactness and pseudocom-pactness, Vestnik MGU, Ser. Mat., Mekh. (1984) No 2 24-27 (in Russian), English translation: Moscow Univ. Math. Bull.
- M. Matveev, A survey on star covering properties, Topology Atlas, Preprint No. 330, 1998.
- S. Mrowka, Some set-teoretic constructions in topology, Fund. Math 44 No.2, (1977) 83-92.
- M. E. Rudin, I. Stares and J. E. Vaughan, From countable compactness to abso-lute countable compactness,Proc. Amer. Math. Soc., 125 (1997), 927-934. https://doi.org/10.1090/S0002-9939-97-04030-6
- Y. Song, A study of star-covering properties in topological spaces, Ph.D Thesis, Shizuoka University, Japan, 2000.
- A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc., 54 (1948), 977-982. https://doi.org/10.1090/S0002-9904-1948-09118-2
- I. Tree, Constructing regular 2-starcompact spaces that are not strongly 2-slar-Lindelof, Topology Appl., 47 (1992), 129-132. https://doi.org/10.1016/0166-8641(92)90067-A