A Development of the Thrusters for Space-Vehicle Maneuver/ACS and Their Application to Launch Vehicles

우주비행체 궤도기동/자세제어용 추력기의 개발과 발사체에의 활용현황

  • 김정수 (부경대학교 기계공학과) ;
  • 정훈 (부경대학교 대학원 에너지시스템공학과) ;
  • 감호동 (부경대학교 기계공학과) ;
  • 서항석 (부경대학교 기계공학과) ;
  • 서혁 ((주)한화 대전공장 개발부)
  • Received : 2010.11.07
  • Accepted : 2010.12.06
  • Published : 2010.12.30

Abstract

A development history of the thrusters used for space-vehicle orbit maneuver/attitude control is reviewed with their performance characteristics. Especially, a scrutiny is made for the current and practical application of TVC/Gimbal/Thrusters to the roll/pitch/yaw-axis control of each stage of launch vehicles. It is well perceived that a precise 3-axis attitude control system (ACS) must be equipped on the final stage of space launch vehicles (SLV) for an attainment of orbit-insertion accuracy. Under the superior reliability as well as moderate performance features, the monopropellant hydrazine thrusters occupy most of the SLV's 3-axis ACS currently operated. Domestic development status of the medium-thrust-level thruster is shortly introduced, finally.

우주비행체 궤도기동 및 자세제어용 추력기의 개발역사를 조명하고 성능특성을 분석하며, 발사체의 단별 3축 제어에 관계하는 TVC, Gimbal, 추력기 등의 실재 활용현황을 평가한다. 우주발사체 최종 단은 탑재체의 정확한 궤도투입을 위하여 정밀한 3축 자세제어 시스템을 포함하여야 한다. 하이드라진 추력기는 양호한 성능특성과 높은 신뢰도를 배경으로 현재 운용중인 발사체 자세제어 시스템의 대부분을 점유하고 있다. 중형급 하이드라진 추력기에 대한 국내의 설계개발과 기술축적 현황에 관해서도 간략히 소개한다.

Keywords

References

  1. Sutton, G. P., History of Liquid Propellant Rocket Engines, AIAA, 2006
  2. 한국추진공학회, 항공우주 추진기관 개론, 한티미디어, 2008
  3. Sutton, G. P., Rocket Propulsion Elements, 7th ed., John Wiley & Sons Inc., 2001
  4. www.astronautix.com
  5. Delft university of technology, www.lr.tudelft.nl
  6. AMPAC-ISP, www.ampacispcheltenham.eu
  7. Rocket & Space Technology, www.braeunig.us
  8. www.spacelaunchreport.com
  9. Astrium, http://cs.astrium.eads.net
  10. Wernimont, E. J., "System Trade Parameter Comparison of Monopropellants: Hydrogen Peroxide vs Hydrazine and Others," AIAA-2006-5235, 2006
  11. Atlas V Launch Services User's Guide, Rev. 11, 2010
  12. United Launch Alliance, Delta II Payload Planners Guide, 06H0214, 2006
  13. United Launch Alliance, Delta IV Payload Planners Guide, 06H0233, 2007
  14. Orbital Sciences Corporation, Pegasus$^{(R)}$ User's Guide, Release 7.0, 2010
  15. Johnson, N. L., "The Cause and Consequences of a Satellite Fragmentation: A Case Study," Advances in Space Research, Vol. 23, No. 1, 1999, pp.165-173 https://doi.org/10.1016/S0273-1177(98)00243-9
  16. Orbital Sciences Corporation, Minotaur IV User's Guide, Release 1.1, 2006
  17. SpaceX, Falcon 1 Launch Vehicle Payload User's Guide, Rev. 7, 2008
  18. SpaceX, Falcon 9 Launch Vehicle Payload User's Guide, Rev. 1, 2009
  19. Arianespace, Ariane 5 User's Manual, Issue 5, Rev. 0, 2008
  20. Arianespace, Soyuz CSG User's Manual, Issue 1, Rev. 0, 2006
  21. JAXA, www.jaxa.jp
  22. IHI AEROSPACE Co., Ltd., www.ihi.co.jp
  23. China Academy of Launch Vehicle Technology, LM-2E User's Manual, 1999
  24. China Academy of Launch Vehicle Technology, LM-3A User's Manual, 1999
  25. China Academy of Launch Vehicle Technology, LM-3B User's Manual, 1999
  26. China Academy of Launch Vehicle Technology, LM-3C User's Manual, 1999
  27. 김정수, "단일액체추진제 소형 추력기의 진공환경 연소시험 및 성능특성 평가," 한국추진공학회지, 제8권, 제4호, 2004, pp.84-90
  28. Kim, J. S., Park, J., Kim, S., Choi, J., and Jang, K. W., "Test and Performance Evaluation of Small Liquid-monopropellant Rocket Engines," AIAA-2006-4388, 2006
  29. Kim, J. S. and Kim, J. S., "A Characterization of the Spray Evolution by Dual-mode Phase Doppler Anemometry in an Injector of Liquid-propellant Thruster," Journal of Mechanical Science and Technology, Vol. 23, No. 6, 2009, pp.1637-1649 https://doi.org/10.1007/s12206-009-0209-7