DOI QR코드

DOI QR Code

MRI 영상의 3차원 가시화를 통한 영상 불균일성 보정 기법

Nonuniformity Correction Scheme Based on 3-dimensional Visualization of MRI Images

  • 김형진 (연세대 전산학과, (주)에이아이랩) ;
  • 서광덕 (연세대 컴퓨터정보통신공학부)
  • 투고 : 2009.12.10
  • 심사 : 2010.01.26
  • 발행 : 2010.04.30

초록

MRI 시스템이 수집하는 인체신호는 매우 미약하기 때문에 영상화 과정을 거치면서 외부 잡음이나 시스템 불안정성에 의한 영향을 쉽게 받을 수 있다. 따라서 본 논문에서는 저 자장 MRI시스템에서 RF 수신코일의 디자인적 요소에 의해 발생되는 불균일성을 분석하여 영상의 균일도 향상 기법을 제안한다. 본 논문에서는 MRI영상의 신호강도 불균일성을 보정하기 위한 방법 중에서 팬텀 데이터를 이용하여 확장된 크기를 갖는 3차원 bias 볼륨 데이터를 획득하기 위한 방법을 제안함으로써 다양한 크기를 갖는 영상의 보정이 가능하도록 하였다. 제안된 bias 데이터의 최적화 기법을 적용하여 실험을 수행한 결과 단일 bias 데이터의 사용으로 다양한 영상법에 의한 영상을 효과적으로 보정할 수 있음을 확인 하였다.

Human body signals collected by the MRI system are very weak, such that they may be easily affected by either external noise or system instability while being imaged. Therefore, this paper analyzes the nonuniformity caused by a design of the RF receiving coil in a low-magnetic-field MRI system, and proposes an efficient method to improve the image uniformity. In this paper, a method for acquiring 3D bias volume data by using phantom data among various methods for correcting such nonuniformity in MRI image is proposed, such that it is possible to correct various-sized images. It is shown by simulations that images obtained by various imaging methods can be effectively corrected using single bias data.

키워드

참고문헌

  1. Z.Hou, "A review on MR image intensity inhomogeneity correction," International Journal of Biomedical Imaging, Vol. 2006, Article ID 49515, pp. 1-11, 2006.
  2. L. Axel, J. Costantini, and J. Listerud, "Intensity correction in surface coil MR imaging," American Journal of Roentgenology, Vol. 148, pp. 418-420, 1987. https://doi.org/10.2214/ajr.148.2.418
  3. M. Tincher, C. R. Meyer, R. Gupta, and D. M. Williams, "Polynomial modeling and reduction of RF body coil spatial inhomogeneity in MRI," IEEE Trans. Medical Imaging, Vol. 12, No. 2, pp. 361-365, Jun. 1993. https://doi.org/10.1109/42.232267
  4. P. Narayana, W. Brey, M. Kulkarni, and C. Sievenpiper, "Compensation for surface coil sensitivity variation in magnetic resonance imaging," Magnetic Resonance Imaging, Vol. 6, pp. 271-274, 1988. https://doi.org/10.1016/0730-725X(88)90401-8
  5. R. Guillemaud, "Uniformity Correction with Homomorphic Filtering on Region of Interest," IEEE Int. Conference on Image Processing, Vol. 2, pp. 872-875, Oct. 1998.
  6. M. Styner, C. Brechbuhler, G. Szekely, and G. Gerig, "Parametric estimate of intensity inhomogeneities applied to MRl," IEEE Trans. Medical Imaging, Vol. 19, No. 3, pp.153-165, 2000. https://doi.org/10.1109/42.845174
  7. B. Likar, M. A. Viergever, and F. Pemus, "Retrospective correction of MR intensity inhomogeneity by information minimization," IEEE Trans. Medical Imaging, Vol. 20, No. 12, pp. 1398-1410, 2001. https://doi.org/10.1109/42.974934
  8. E. Ardizzone, R. Pirrone, and O. Gambino, "Frequency Determined Homomorphic Unsharp Masking Algorithm on Knee MR Images," Lecture Notes in Computer Science, Vol. 3617, 2005.
  9. D. Wicks, G. Barker, and P. Tofts, "Correction of intensity nonuniformity in MR images of any orientation," Magnetic Resonance Imaging, Vol. 11, No. 2, pp. 183-196, 1993. https://doi.org/10.1016/0730-725X(93)90023-7
  10. E. Haacke, "Magnetic Resonance Imaging: Physical Principles and Sequence Design," New York: John Wiley & Sons Inc., 1999.
  11. DICOM standard (DICOM PS 3-2008), National Electrical Manufacturers Association.
  12. D. Mitchell, "MRl Principles," W.B. Saunders Company, 2004.