DOI QR코드

DOI QR Code

Liquefaction Characteristics of Polypropylene-Polystyrene Mixture by Pyrolysis at Low Temperature

Polypropylene-Polystyrene 혼합물의 저온 열분해에 의한 액화특성

  • Cho, Sung-Hyun (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Chi-Hoi (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Su-Ho (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Bong-Hee (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2010.01.28
  • Accepted : 2010.03.05
  • Published : 2010.03.31

Abstract

The low temperature pyrolysis of polypropylene (PP), polystyrene (PS) and polypropylene-polystyrene (PP-PS) mixture in a batch reactor at the atmospheric pressure and $450^{\circ}C$ was conducted to investigate the synergy effect of PP-PS mixture on the yield of pyrolytic oil. The pyrolysis time was varied from 20 to 80 mins. The products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the petroleum product quality standard of Ministry of Knowledge Economy. The analysis of the product oils by GC/MS(Gas chromatography/Mass spectrometry) showed that new components were not detected by mixing of PP and PS. There was no synergy effect according to the mixing of PP and PS. Conversions and yields of PP-PS mixtures were linearly dependent on the mixing ratio of samples except for heavy oil yields. Heavy oil yields showed almost constant regardless of the mixing ratio.

폴리프로필렌-폴리스타이렌 혼합물의 열분해에 대한 시너지효과를 조사하기 위하여 폴리프로필렌(PP)과 폴리스타이렌(PS) 및 PP-PS혼합물의 저온열분해를 회분식 반응기를 이용하여 상압 및 $450^{\circ}C$에서 실행하였다. 열분해 시간은 20~80분까지 하였고 열분해로 생성된 성분은 지식경제부에서 고시한 증류성상온도에 따라 가스, 가솔린, 등유, 경유, 중유로 분류하였다. GC/MS(Gas chromatography/Mass spectrometry)에 의한 생성오일의 성분 분석은 PP-PS 혼합에 의해서 새로운 성분이 검출되지 않았음을 보여주었다. PP-PS 혼합물의 열분해 생성물의 분석결과, 혼합에 따른 시너지효과 또한 나타나지 않았다. PP-PS 혼합물의 중유수율을 제외한 각 생성물의 수율은 시료의 혼합비율에 비례하였다. 중유수율은 혼합비에 관계없이 거의 일정하게 나타났다.

Keywords

References

  1. Ramdoss, K., and Tarrer, R., "High-temperature Liquefaction of Waste Plastics," Fuel, 77(4), 293-299 (1998). https://doi.org/10.1016/S0016-2361(97)00193-2
  2. Miranda, R., Pakdel, H., Roy, C., and Vasile, C., "Vacuum Pyrolysis of Commingled Plastics Containing PVC II. Product Analysis," Polym. Degrad Stabil., 73(1), 47-67 (2001). https://doi.org/10.1016/S0141-3910(01)00066-0
  3. Murty, M. V. S., Grulke, E. A., and Bhattacharyya, D., "Influence of Metallic Additives on Thermal Degradation and Liquefaction of High Density Polyethylene (HOPE)," Polym. Degrad Stabil., 61(3), 421-430 (1998). https://doi.org/10.1016/S0141-3910(97)00228-0
  4. Conesa, J. A., Font, R., MarcilIa, A., and Garcia, A. N., "Pyrolysis of Polyethylene in a Fluidized Bed Reactor," Energ. Fuel., 8(6), 1238-1246 (1994). https://doi.org/10.1021/ef00048a012
  5. Conesa, J. A., Font, R., and Marcilla, A., "Comparison between the Pyrolysis of Two Types of Polyethylenes in a Fluidized Bed Reactor," Energ. Fuel., 11(1), 126-136 (1997). https://doi.org/10.1021/ef960098w
  6. Sugimura, Y., and Tsuge, S., "Pyrolysis-hydrogenation Glass Capillary Gas Chromatographic Characterization of Polyethylenes and Ethylene $\alpha$ -olefm Copolymers," Macromolecules, 12(3), 512-514 (1979). https://doi.org/10.1021/ma60069a034
  7. Scott, D. S., Czemik, S. R., Piskorz, J., and Radlein, A. G., "Fast Pyrolysis of Plastic Wastes," Energ. Fuel., 4(4), 407-411 (1990). https://doi.org/10.1021/ef00022a013
  8. Encinar, J. M., and Gonzalez, J. F., "Pyrolysis of Synthetic Polymers and Plastic Wastes. Kinetic Study," Fuel Process. Technol., 89(7), 678-686 (2008). https://doi.org/10.1016/j.fuproc.2007.12.011
  9. Brebu, M., Bhaskar, T., Murai, K., Muto, A., Sakata, Y., and Uddin, M. A., "The Effect of PVC and/or PET on Thermal Degradation of Polymer Mixtures Containing Brominated ABS," Fuel, 83(14), 2021-2028 (2004). https://doi.org/10.1016/j.fuel.2004.04.011
  10. McNeiIl, I. C., Thermal Degradation, Pergamon Press, Oxford, 1989, pp. 55-76.
  11. Phae, C. G., Kim, Y. S., and Jo, C. H., "Assessment of Practical Use of Recycling Oil from the Pyrolysis of Mixed Waste Plastics," J. Korean. Soc. Energy Eng., 14(2). 159-166 (2005).
  12. Kaminsky, W., Bark, A., and Arndt, M., "New Polymers by Homogeneous Zirconocene/aluminoxane Catalysts," Makromol. Chem,. Makromol. Symp., 47, 83-93 (1991). https://doi.org/10.1002/masy.19910470108
  13. Yu, H. J., Park, S. Y., and Lee, B. H., "Liquefaction Characteristics of HDPE, PP and PS by Isothermal Pyrolysis," J. Korean. Oil Chem, Soc., 19(3), 198-205 (2002).
  14. Lee, B. H., Yu, H. J., and Kim, D. S., "Product Distribution Characteristics of High Impact Polystyrene Depolymerization by Pyrolysis," Polym-Korea, 29(1), 64-68 (2005).
  15. Bockhom, H., Hornung, A., Hornung, U., and SchawaIler, D., "Kinetic study on the thermal degradation of polypropylene and polyethylene," Anal. Appl. Pyrol., 48(2), 93-109 (1999). https://doi.org/10.1016/S0165-2370(98)00131-4