미소변형율 강성을 고려한 지반굴착 해석

The Analysis of Excavation Behavior Considering Small Strain Stiffness

  • 김영민 (전주대학교 공과대학 토목환경공학과)
  • 투고 : 2010.04.16
  • 심사 : 2010.06.07
  • 발행 : 2010.06.30

초록

본 논문에서는 2단 앵커로 지지된 토류벽 굴착에 대한 유한요소해석으로 지표면침하, 토류벽의 횡방향변위, 모멘트분포 예측에 대한 연구를 수행하였다. 지반굴착에 대한 수치해석에 있어서 적절한 구성방정식을 고려하는 것은 매우 중요하다. 본 연구에서는 미소변형율 강성을 고려한 지반 굴착해석이 지표면 침하에 대하여 더 합리적인 예측을 보여 주었다. 또한 미소변형율 강성변수에 대한 굴착해석에 미치는 영향에 대해서도 매개변수 분석을 수행하였다.

This paper describes research on the prediction of the vertical displacement of surface, horizontal displacements and bending moments in two anchored retaining wall for an excavation by a finite element program. It is very important to consider the appropriate constitutive model for the numerical analysis in excavation behavior. It is shown in this paper that the analyses of excavation considering small strain stiffness gives the more reasonable prediction of the vertical displacement of surface. and the parametric study on the small strain stiffness parameters for excavation analysis has been analysed.

키워드

참고문헌

  1. 신종호 (2001), "화강토의 구성방정식 및 터널해석에의 적용", 한국지반공학회논문집, Vol.17, No.1, pp.131-139.
  2. 이병철, 김동수, 고동희 (2005), "역재하/재재하시 저변형율 영역에서 지반의 응력-변형율 모델", 한국지반공학회논문집, 제25권, 제6C호, pp.413-419.
  3. Alpan I. (1970), "The geotechnical properties of soils", Earth-Science Reviews. Vol.6, pp.5-49. https://doi.org/10.1016/0012-8252(70)90001-2
  4. Ben, T. (2007), Small-Strain Stiffness of Soils and its Numerical Consequences. Dr-Ing Thesis. Institute of Geotechnics, University of Stutgart.
  5. Caspe, M.S. (1966), "Surface Settlement Adjacent to Braced Open Cuts", JSMFD, ASCE, Vol.92, SM4, pp.51-59.
  6. Duncan, J.M. and Chang, C.Y., (1970), "Nonlimear analysis of stress and strain in soil", Journal of the Soil Mech. and Found. Div., ASCE, Vol.96, pp.1629-1653.
  7. Hardin, B.O. (1978), "The nature of stress-strain behaviour of soils", Proc. Earthquake Engineering and Soil Dynamics, Vol.1, New York, pp.3-90.
  8. Hardin, B.O. and Drenevich, V.P. (1972), "Shear modulus and damping in soils: Measurement and parameter effects", J. of SMF Div., ASCE, Vol.98, SM6, pp.603-624.
  9. Jardine, R.J., Potts, D.M., Fourie, A.B. and Burland, J.B. (1986), "Studies of the influence of non-linear stress-strain characteristics in soil-structure interaction", Geotechnique, Vol.36, No.3, pp.377-396. https://doi.org/10.1680/geot.1986.36.3.377
  10. Potts, D.M., Zdravkovic, L. (2001), Finite element analysis in geotechnical engineering:Application. Thomas Telford, London.
  11. Ramberg, W. and Osgood, W.R. (1943), "Description of stressstrain curves by three parameters", Technical Notes: National Advisory committee for Aeronautics No.902, Washington, pp.27.
  12. Schanz, Vermeer, P.A. and Bonnier,P.G., (1999), "The hardening soil model: Formulation and verification", Beyond 2000 in computational geotechnics, Balkema, Rotterdam, pp.1-16.
  13. Schweiger, H.F. (2002), "Results from numerical benchmark exercises in geotechnics, Numege 2002", 5th European Conference Numerical Methods in Geotechnical Engineering, Paris, Vol.1, pp.305-314.
  14. Tatsuoka, F., Jardine, R.J., LoPresti, D., DiBenedetoo, H. and Kodaka. T. (1997), "Theme Lecture: Characterizing the prefailure deformation properties of geomaterials", Proc. of 14th International Conference on Soil Mechanics and Foundation Engineering, Hamberg, Vol.4, pp.2129-2164.
  15. Vucetic M. and Dobry R. (1991), "Effect of soil plasticity on cyclic response", J. of Geotechnical Engineering, ASCE. Vol.117, pp.89-107. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89)
  16. Zimmermand, A. Truty Th. and Podles, K. (2009), Z_Soil.PC 2009 Manual, Zace Services Ltd. Switzerland.