References
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950) 64-66. https://doi.org/10.2969/jmsj/00210064
- L. M. Arriola and W. A. Beyer, Stability of the Cauchy functional equation over p-adic fields, Real Analysis Exchange, 31(2005/2006), 125-132 https://doi.org/10.14321/realanalexch.31.1.0125
- D. G. Bourgin, Classes of transformations and bordering transformations, Bull. AMS, 57(1951), 223-237. https://doi.org/10.1090/S0002-9904-1951-09511-7
- L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., 346(2004), 43-52.
- J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for the con- tractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74(1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- K. Hensel, Uber eine news Begrundung der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math. Verein, 6(1897), 83-88.
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci.U.S.A., 27(1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
- S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
- Y.-S Jung and I.-S. Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl., 306b(2005) 752-760.
- Z. Kaiser, On stability of the monomial functional equation in normed spaces over fields with valuation, J. Math. Anal. Appl., 322(2006), No. 2, 1188-1198. https://doi.org/10.1016/j.jmaa.2005.04.087
- K.W. Jun and H.M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274(2002), 867-878. https://doi.org/10.1016/S0022-247X(02)00415-8
- S.-M. Jung and T.-S. Kim, A fixed point approach to the stability of the cubic func- tional equation, Bol. Soc. Mat. Mexicana, (3) 12(2006), no. 1, 51-57.
- A. K. Mirmostafaee, Approximately additive mappings in non-Archimedean normed spaces, Bull. Korean Math. Soc., 46(2009) no.2, 378-400. https://doi.org/10.4134/BKMS.2009.46.2.387
- A.K. Mirmostafaee, Stability of quartic mappings in non-Archimedean normed spaces, Kyungpook Math. J., 49(2009), 289-297. https://doi.org/10.5666/KMJ.2009.49.2.289
- A. K. Mirmostafaee and M. S. Moslehian, Fuzzy approximately cubic mappings, Inform. Sci., 178(2008), no 19, 3791-3798. https://doi.org/10.1016/j.ins.2008.05.032
- M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., (N. S.), 37(2006), no. 3, 361-376. https://doi.org/10.1007/s00574-006-0016-z
- M.S. Moslehian, The Jensen functional equation in non-Archimedean normed spaces, J. Funct. Spaces Appl., 7(2009), no. 1, 13-24. https://doi.org/10.1155/2009/802032
- M. S. Moslehian and T. M. Rassias, Stability of functional equations in non Archimedean spaces, Appl. Anal. Discrete Math., 1(2007), 325-334. https://doi.org/10.2298/AADM0702325M
- M. S. Moslehian and G. Sadeghi, Stability of two types of cubic functional equations in non-Archimedean spaces, Real Anal. Exchange, 33(2008), no. 2, 375-383. https://doi.org/10.14321/realanalexch.33.2.0375
- A. Najati, The generalized Hyers-Ulam-Rassias stability of a cubic functional equa- tion, Turk J. Math., 31(2007), 395-408.
- L. Narici and E. Beckenstein, Strange terrain|non-Archimedean spaces, Amer. Math. Monthly, 88(1981), no. 9, 667-676. https://doi.org/10.2307/2320670
- J. M. Rassias, Alternative contraction principle and Ulam stability problem, Math. Sci. Res. J., 9(7)(2005), 190-199.
- V. Radu, The fixed point alternative and stability of functional equations, Fixed Point Theory, 4(2003), no. 1. 91-96.
- J. M. Rassias, Solution of the stability problem for cubic mappings, Glasnik Math., Vol. 36, 56(2001), 63-72.
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- S. M. Ulam, Problems in Modern Mathematics (Chapter VI, Some Questions in Analysis: 1, Stability), Science Editions, John Wiley & Sons, New York, 1964.
Cited by
- Stability and superstability of generalized quadratic ternary derivations on non-Archimedean ternary Banach algebras: a fixed point approach vol.2012, pp.1, 2012, https://doi.org/10.1186/1687-1812-2012-97
- Nearly k-th Partial Ternary Quadratic *-Derivations vol.55, pp.4, 2015, https://doi.org/10.5666/KMJ.2015.55.4.893
- Fixed points and quadratic equations connected with homomorphisms and derivations on non-Archimedean algebras vol.2012, pp.1, 2012, https://doi.org/10.1186/1687-1847-2012-128
- Approximately Orthogonal Additive Set-valued Mappings vol.53, pp.4, 2013, https://doi.org/10.5666/KMJ.2013.53.4.646
- A General System of Nonlinear Functional Equations in Non-Archimedean Spaces vol.53, pp.3, 2013, https://doi.org/10.5666/KMJ.2013.53.3.419
- On a New Type of Hyperstability for Radical Cubic Functional Equation in Non-Archimedean Metric Spaces vol.72, pp.1-2, 2017, https://doi.org/10.1007/s00025-017-0716-2
- A new type of approximation for the radical quintic functional equation in non-Archimedean (2, β )-Banach spaces vol.457, pp.1, 2018, https://doi.org/10.1016/j.jmaa.2017.08.015