References
- G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, 1934.
- D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Inequalities involving functions and their integrals and derivatives, Kluwer Academic, Boston, 1991.
- M. Gao, On Hilbert's inequality and its applications, J. Math. Anal. Appl., 212(1997), 316-323. https://doi.org/10.1006/jmaa.1997.5490
- J. Kuang, On new extensions of Hilbert's integral inequality, Math. Anal. Appl., 235(1999), 608-614. https://doi.org/10.1006/jmaa.1999.6373
- B. G. Pachpatte, Inequalities similar to the integral analogue of Hilbert's inequality, Tamkang J. Math., 30(1999), 139-146.
- B. Yang, The Norm of Operator and Hilbert-type Inequalities, Science Press, Beijing, 2009.
- B. Yang, On a relation between Hilberts inequality and a Hilbert-type inequality, Applied Mathematics Letters, 21, 5(2008), 483-488. https://doi.org/10.1016/j.aml.2007.06.001
- W. Zhong and B. Yang, A reverse form of multiple Hardy-Hilbert's integral inequality, International Journal of Mathematical Inequalities and Applications, 2007, 1(1), 67- 72.
- C. Zhao and L. Debnath, Some new inverse type Hilbert integral inequalities, Journal of Mathematical Analysis and Applications, 2001, 262(1), 411-418. https://doi.org/10.1006/jmaa.2001.7595
- J. Kuang, Applied Inequalities, Shangdong Science Press, Jinan, 2004.
Cited by
- A new extension of a Hardy-Hilbert-type inequality vol.2015, pp.1, 2015, https://doi.org/10.1186/s13660-015-0918-7