DOI QR코드

DOI QR Code

Mechanism of Protoporphyrinogen Oxidase-inhibiting Herbicide, Oxyfluorfen Tolerance in Squash leaves of Various Ages

Protoporphyrinogen Oxidase 저해형 제초제 Oxyfluorfen에 대한 호박 엽령별 내성기작

  • Kuk, Yong-In (Dept. of Development in Resources, College of Life Science and Natural Resources, Sunchon National University) ;
  • Yun, Young-Beom (Dept. of Development in Resources, College of Life Science and Natural Resources, Sunchon National University)
  • 국용인 (순천대학교 생명산업과학대학 자원식물개발학과) ;
  • 윤영범 (순천대학교 생명산업과학대학 자원식물개발학과)
  • Received : 2010.05.28
  • Accepted : 2010.06.23
  • Published : 2010.06.30

Abstract

Differential tolerance to protoporphyrinogen oxidase (Protox)-inhibiting herbicides, oxyfluorfen was observed between leaf ages in squash. Physiological responses to oxyfluorfen, including leaf injury, cellular leakage, accumulation of tetrapyrroles, and antioxidative enzymes activity, were investigated in leaf age classes of squash to identify mechanisms of oxyfluorfen tolerance. Leaf 1, 2, and 3 injuries for Joongangaehobak were >10,000, 1,286, and 1.6-fold higher than that of leaf 4, after treatment of oxyfluorfen. On the other hand, leaf 1, 2, and 3 injuries for Sintowjahobak were 725, 366, and >0.6-fold higher than that of leaf 4, after treatment of oxyfluorfen. However, in contrast to oxyfluorfen treatment results, leaf injury of squash leaf 4 treated with paraquat was much smaller than in leaves 1, 2 and 3. Electrolyte leakage from the tissues treated with oxyfluorfen was higher in the youngest leaf (Leaf 4) than in the older leaves 1, 2, and 3. Differential leaf response to oxyfluorfen of squash appears to be due in large part to differences in protoporphyrin IX (Proto IX), Mg-Proto IX, and Mg-Proto IX monomethyl ester accumulation in treated leaves. In contrast, leaf 4 had higher activities of superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase than leaf 1 after treatment with oxyfluorfen. However, the induction in antioxidant activity in leaf 4 was not enough to overcome the toxic effects of a Protox inhibitor, oxyfluorfen, so the leaf eventually died.

Protoporphyrinogen oxidase(Protox) 저해형 제초제인 oxyfluorfen에 대한 내성차이는 동일 개체내의 호박 엽령에서 관찰되었다. 엽위별 oxyfluorfen에 내성기작을 구명하기 위해 잎의 피해정도, 세포내 구성물질의 누출, 포르피린 생합성 경로의 tetrapyrrole 중간물질 축적량 및 항산화효소 활성을 포함한 생리적 반응을 조사하였다. 중앙애호박의 1, 2 및 3엽에 대한 oxyfluorfen에 내성은 4엽에 비해 각각 >10,000, 1,286 및 1.6배 높았고, 신토좌의 1, 2 및 3엽에 대한 oxyfluorfen에 내성은 4엽에 비해 각각 725, 366, >0.6배 높았다. 그러나 oxyfluorfen과 작용기작이 다른 paraquat 처리에서는 oxyfluorfen 처리의 결과와 다르게 두 품종 모두 상위엽인 4엽이 하위엽인 1, 2 및 3엽에 비해 훨씬 피해가 적었다. Oxyfluorfen 처리에 따른 전해물질의 누출은 처리 후 광노출 기간이 경과할수록 상위엽(4엽)에서 하위엽(1, 2, 3엽) 보다 많았다. Oxyfluorfen 처리에 의한 tetrapyrrole 중간물질 protoporphyrin IX(Proto IX), Mg-Proto IX 및 Mg-Proto IX monomethyl ester의 축적량은 감수성인 4엽이 내성인 1엽에 비해 많았다. 따라서 oxyfluorfen 처리에 대한 호박 엽령별 반응 차이는 tetrapyrrole 중간물질의 과다한 축적에 의해 기인되는 것으로 생각된다. Tetrapyrrole 중간 물질 축적량의 결과와 다르게 항산화효소 superoxide dismutase, catalase, peroxidase, ascorbate peroxidase 및 glutathione reductase 활성은 무처리 및 oxyfluorfen 처리 후 4엽이 1엽에 비해 높았다. 그러나 4엽에서 항산화효소 활성 유도는 Protox 저해제 oxyfluorfen의 독성효과를 극복하는데 충분하지 않아 결국 4엽은 고사하게 되는 것으로 생각된다.

Keywords

References

  1. 구자옥, 국용인. 1997. Protoporphyrinogen oxidase 저해형 제초제에 대한 밀(Tritcum aestivum L.)과 보리(Hordeum vuigare L.)의 특이반옹 작용 기작. I. 흡수 및 해부학적 차이. 한국작물학회지 42: 68-78.
  2. 국용인, 구자옥. 1996. Proloporphyrinogen oxidase 저해형 Oxyfluorfen에 대한 식물종간 내성차이. 한국환경농학회지 15:316-324.
  3. 국용인, 구자옥, 전재철. 1996. Oxyfluorfen에 대한 내성 및 감수성 벼품종의 생리활성 기구 III. Protoporphyrinogen oxidase(Protox) 활성과 Protoporphyrinogen IX(PPIX) 축적. 한국잡초학회지 16:150-159.
  4. 국용인, 구자옥. 1997. Protoporphyrinogen oxidase 저해형 제초제에 대한 밀(Tritcum aestivum L.)과 보리 (Hordeum vulgare L.)의 특이반응 작용 기작 II. Protoporphyrin IX 축적 및 항산화 방어계 차이. 한국작물학회지 42:79-88.
  5. 국용인, 신지산, 정정성, 권오도, 김동관, 한욱수, 구지옥. 2003. Proloporphyrinogen oxidase 저해형 제초제와 Paraqual에 대한 담배 엽령별 내성차이와 기작. 한국잡초학회지 23: 100-111.
  6. 손민. 2007. 밀과 보리의 엽위별 oxyfluorfen에 대한 내성 차이. 전북대학교 석사학위논문 p. 45.
  7. 이희재, 신지산, 한성욱, 구자옥. 1998. Oxyfluorfen에 대한 담배의 엽령별 생리적 반응. 한국잡초학회지 18:69-75.
  8. 최성환, 김노열, 이증주. 1996. Diphenyl ether계 제초제 Oxyfluorfen에 대한 벼 품종간 저항성기구. 한국잡초학회지 16:362-371.
  9. Becerril, J. M., and S. O. Duke. 1989. Protoporhyrin IX content correlates with activity of photobleaching herbicides. Plant Physiol. 90: 1175-1181. https://doi.org/10.1104/pp.90.3.1175
  10. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein-dye binding. Anal Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  11. Chen, G. X., and K. Asada. 1989. Ascorbate peroxidase in tea leaves: Occurrence of two isozymes and the differences in their enzymatic and molecular propenies. Plant Cell Physiol. 30:987-998.
  12. Choi, J. S., H. J. Lee, I. T. Hwang, J. Y. Pyon and K. Y. Cho. 1999. Differential susceptibilities of wheat and barley to diphenyl ether herbicide oxyfluorfen. Pestic. Biochem. Physiol. 65:62-72. https://doi.org/10.1006/pest.1999.2429
  13. Chun, J. C., H. J. Lee, S. J. Lim, S. E. Kim and J. O. Guh. 2001. Comparative absorplion, translocation, and metabolism of foliar-applied oxyfluorfen in wheat and barley. Pestic. Biochem. Physiol. 70: 118-125. https://doi.org/10.1006/pest.2001.2546
  14. Donahue, J. L., C. M. Okpodu, C. L. Cramer, E. A. Grabau and R. G. Alscher. 1997. Responses of antioxidants to paraquat in pea leaves: Relationships to resistance. Plant Physiol. 113:249-257. https://doi.org/10.1104/pp.113.1.249
  15. Duke, S. O., J. Lydon, J. M. Becerril, T. D. Shennan, L. P. Lehnen and H. Matsumoto. 1991. Protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci. 39:465-473.
  16. Eastin, E. F. 1971. Fate of fluorodifen in resistant peanut seedlings. Weed Sci. 19:262-265.
  17. Egley, G. H, R. N., Paul Jr, K. C. Vaughn and S. O. Duke. 1983. Role of peroxidase in the development of water-impenneable seed coats in Sida spinosa L. Plants. 157:224-232. https://doi.org/10.1007/BF00405186
  18. Finckh, B. F., and K. J. Kunert. 1985. Vitamins C and E : An antioxidative system against herbicide-induced lipid peroxidation in higher plants. J. Agric. Food Chem. 33:574-577. https://doi.org/10.1021/jf00064a006
  19. Frear, D. S., H. R. Swanson and E. R. Mansager. 1983. Acifluorfen metabolism in soybean: Diphenylether bond cleavage and the fonnation of homoglutathione, cysteine, and glucose conjugates. Pestic. Biochem. Physiol. 20:299-310. https://doi.org/10.1016/0048-3575(83)90104-9
  20. Guh, J. O., K. lshizuka and J. Y. Pyon. 1988. Differential absorption and translocation of oxyfluorfen between selected rice cultivars. Korean J. Weed Sci. 8:37-44.
  21. Haworth, P., and F. D. Hess. 1988. The generation of singlet oxygen ($^1O_2$) by the nitrodiphenyl ether herbicide oxyfluorfen is independent of photosynthesis. Plant Physiol. 86:672-676. https://doi.org/10.1104/pp.86.3.672
  22. Jacobs, J. M. , and N. J. Jacobs. 1993. Porphyrin accumulation and export by isolated barley (Hordeum vulgare L.) plastids : Effect of diphenyl ether herbicides. Plant Physiol. 101 : 1181-1187. https://doi.org/10.1104/pp.101.4.1181
  23. Jacobs, J. M., N. J. Jacobs and S. O. Duke. 1996. Protoporphyrinogen destruction by plant extracts and correlation with tolerance to protoporphyrinogen oxidase-inhibiting herbicides. Pestic. Biochem. Physiol. 55:77-83. https://doi.org/10.1006/pest.1996.0037
  24. Komives, T., and G. Gullner. 1994. Mechanism of plant tolerance to photodynamic herbicides. Amer. Chem. Soc. Symp. Ser. 559:177-190.
  25. Kuk, Y. I., J. S. Shin, H. I. Jung, J. O. Guh, S. Jung and N. R. Burgos. 2006. Mechanism of paraquat tolerance in cucumber leaves of various ages. Weed Sci. 54:6-15. https://doi.org/10.1614/WS-04-135R.1
  26. Lee, H. J., and S. O. Duke. 1994. Protoporphyrinogen IX -oxidizing activities involved in the mode of action of peroxidizing herbicides. J. Agric. Food Chem. 42:2610-2618. https://doi.org/10.1021/jf00047a044
  27. Lee, J. J., H. Matswooto and K. Ishizuka. 1992. Light involvemem in oxyfluorfen-induced protoporphyrin IX accumulation in several species of iniaci plams. Pestic. Biochem. Physiol. 44:119-125. https://doi.org/10.1016/0048-3575(92)90109-D
  28. Lermontova, I., and B. Grimm. 2000. Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. Plant Physiol. 122:75-83. https://doi.org/10.1104/pp.122.1.75
  29. Matringe, M., J. M. Camadro, P. Labbe and R. Scalia. 1989. Protoporphyrinogen oxidase as a molecular target of diphenyl ether herbicides. Biochem. J. 260:231-235. https://doi.org/10.1042/bj2600231
  30. Matsumoto, H., S. Kojima and K. Ishizuka. 1990. Characteristics of herbicidal injury by diphenylether herbicides oxyfluorfen and bifenox in Lemna pausicostata Hegelm. 6746. J. Agric. Food Chem. 38:2066-2071. https://doi.org/10.1021/jf00101a014
  31. Mishra, N. P., R. K. Mishra and G. S. Singhal. 1993. Changes in the activities of antioxidant enzymes during exposure of intact wheat leaves of strong visible light at different temperature in the presence of protein synthesis inhibitors. Plant Physiol. 102:903-910. https://doi.org/10.1104/pp.102.3.903
  32. Pereira, J. F., W. F. Splittstoesser and H. J. Hopen. 1971. Mechanism of intra-specific selectivity of cabbage to nitrofen. Weed Sci. 19:647-655.
  33. Rao, M. V., G. Paliyath and D. P. Onnrod. 1996. Ultraviolet-B- and ozone-induced biochemical changes in anlioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 110: 125-136. https://doi.org/10.1104/pp.110.1.125
  34. Ricotta, J. A., and J. B. Masiunas. 1992. Relationship of leaf surface characteristics to acifluorfen tolerance in tomato (Lycopersicon esculentum) and related species. Weed Sci. 40:402-407.
  35. Scalia, R., and M. Matringe. 1994. Inhibitors of proloporphyrinogen oxidase as herbicides: Diphenyl ethers and related photobleaching molecules. Rev. Weed Sci. 6:103-132.
  36. Sherman, T. D., J. M. Becerril, H. Matsumoto, M. V. Duke, J. M. Jacobs, N. J. Jacobs and S. O.Duke. 1991 . Physiological basis for differential sensitivities of plant species to protoporphyrinogen oxidase-inhibiting herbicides. Plant Phsiol. 97: 280-287. https://doi.org/10.1104/pp.97.1.280
  37. Spychalla, J. P., and S. L. Desborogh. 1990. Superoxide dismutase, catalase, and ${\alpha}-tocopherol$ content of stored potato tubers. Plant Physiol. 94:1214-1218. https://doi.org/10.1104/pp.94.3.1214
  38. Wilkinson, R. E. 1980. Ecotype variation of tamarix pentandra epicuticular wax and possible relationship with herbicide sensitivity. Weed Sci. 28:110-113.
  39. Witkowski, O. A., and B. P. Halling. 1989. inhibition of plant protoporphyrinogen oxidase by the herbicide acifluorfen-methyl. Plant Physiol. 90: 1239-1242. https://doi.org/10.1104/pp.90.4.1239