DOI QR코드

DOI QR Code

Enzymatic Hydrolysis of Rice Straw, a Lignocellulosic Biomass, by Extracellular Enzymes from Fomitopsis palustris

Fomitopsis palustris의 균체 외 효소에 의한 볏짚 당화에 관한 연구

  • Kim, Yoon-Hee (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Cho, Moon-Jung (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Shin, Keum (Institute of Forest Science, Kookmin University) ;
  • Kim, Tae-Jong (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Kim, Nam-Hun (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Kim, Yeong-Suk (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University)
  • 김윤희 (국민대학교 삼림과학대학 임산생명공학과) ;
  • 조문정 (국민대학교 삼림과학대학 임산생명공학과) ;
  • 신금 (국민대학교 산림과학연구소) ;
  • 김태종 (국민대학교 삼림과학대학 임산생명공학과) ;
  • 김남훈 (강원대학교 산림환경과학대학 산림바이오소재공학과) ;
  • 김영숙 (국민대학교 삼림과학대학 임산생명공학과)
  • Received : 2010.03.23
  • Accepted : 2010.04.16
  • Published : 2010.05.25

Abstract

In the enzymatic hydrolysis of rice straw and wood meals using extra-cellular enzymes from Fomitopsis palustris, key factors which enhanced the sugar conversion yield were investigated in this work, such as enzyme production and enzyme reaction conditions, surfactant effects, and the surface structure of substrates. F. palustris cultured with softwood mixture produced 12.0 U/$m{\ell}$ for endo-${\beta}$-1,4-gulcanase (EG), 116.68 U/$m{\ell}$ for ${\beta}$-glucosidase (BGL), 18.82 U/$m{\ell}$ for cellobiohydrolase (CBH), and 13.33 U/$m{\ell}$ for ${\beta}$-xylosidase (BXL). These levels of BGL, CBH, and BXL activities were two to four folds more than enzyme activities of F. palustris cultured with rice straw. The optimum reaction conditions of cellulase-RS which produced by F. palustris with rice straw and cellulase-SW which produced by F. palustris with softwood mixture were pH 5.0 at $45^{\circ}C$ and pH 5.0 at $50^{\circ}C$, respectively. The sugar conversion yield of cellulase-SW had the highest value of $40.6{\pm}0.6%$ within 72 h when rice straw was used as substrate. By adding 0.1% Tween 20 (w/w-substrate), the sugar conversion yield of rice straw was increased to 44%, which was about four fifths sugar conversion yield of commercial enzyme, Celluclast 1.5L (Novozyme A/S). A low crystallinity and an intensive fibril surface observed by the scanning electron microscope may explain the high sugar conversion yield of rice straw.

갈색부후균인 Fomitopsis palustris에서 균체 외 cellulase 생산 특성과 이 효소를 이용하여 목재와 볏짚의 당화특성, mediator 첨가 효과, 목질기질의 미세 표면구조나 결정화도가 효소 당화에 미치는 영향 등에 대해 연구하였다. F. palustris의 균체 외 효소의 생산에 혼합목분을 탄소원으로 이용 시 endo-${\beta}$-1,4-gulcanase (EG)는 12.0 U/$m{\ell}$, ${\beta}$-glucosidase (BGL)는 116.68 U/$m{\ell}$, cellobiohydrolase (CBH)는 18.82 U/$m{\ell}$, 그리고 ${\beta}$- xylosidase (BXL)는 13.33 U/$m{\ell}$의 활성을 보였다. 이러한 활성은 BGL, CBH, 그리고 BXL이 볏짚을 이용한 경우보다 약 2~4배 정도 높았다. 볏짚을 탄소원으로 이용하여 생산한 cellulase-RS의 효소 최적반응 온도 및 pH는 $45^{\circ}C$와 pH 5.0이었으며, 혼합 목분을 탄소원으로 이용하여 생산한 cellulase-SW의 경우에는 $50^{\circ}C$와 pH 5.0이었다. Cellulase-SW는 볏짚을 기질로 사용할 때 $40.6{\pm}0.6%$로 가장 높은 당화율을 보였다. 또한 당화촉매제인 Tween 20의 첨가로 당화율이 44%로 상승하여 상용화 효소인 Celluclast 1.5L의 53.7%의 당화율 대비 약 82% 수준으로 상승되었다. 이는 본 실험에서 사용한 효소가 조효소 형태임을 고려하면 상용화 효소에 매우 근접한 당화율을 얻은 것으로 판단된다. 또한 볏짚의 낮은 조직 결정화도와 주사전자현미경을 이용한 볏짚 표면의 섬유화를 통한 표면적 증대 효과는 목재에 비해 높은 볏짚의 당화율에 대한 원인을 제시하였다.

Keywords

References

  1. Jorgensen, H. and L. Olsson. 2006. Production of cellulases by Penicillium brasilianum IBT 20888-Effect of substrate on hydrolytic performance, Enzyme and Microbial Technology 38: 381-390 https://doi.org/10.1016/j.enzmictec.2005.06.018
  2. Juhaz, T., Z. Szengyel, K. Reczey, M. Siika-Aho, and L. Viikari. 2005. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochemistry 40: 3519-3525. https://doi.org/10.1016/j.procbio.2005.03.057
  3. Fritscher, C, R. Messner, and C. P. Kubicek. 1990. Cellobiose metabolism and cellobiohydrlase I biosynthesis by Trichoderma reesei. Experimental Mycology 14: 405-415. https://doi.org/10.1016/0147-5975(90)90063-Y
  4. Kubicek, C. P., G. Muhlbauer, M. Krotz, E. John, and E. M. Kubicek. 1988. Properties of a conidial bound enzyme system from Trichoderma reesei. General Microbiology 134: 1215-1222.
  5. Morikawa, Y., T. Ohashi, O. Mantani, and H. Okada. 1995. Cellulase induction by lactose in Trichoderma reesei PC-3-7. Applied Biochemistry and Biotechnology. 44: 106-111.
  6. Mach, R. L., B. Seiboth, A. Myasnikov, R. Gonzalez, J. Strauss, and A. M. Harkki. 1995. The Bgl1 gene of Trichoderma reesei QM9414 encodes an extracellular, cellulose inducible beta-glucosidase involved in cellulase induction by sophorose. Molecular Biology 16: 687-697.
  7. 이영민, 최두열, 김현정, 윤정준, 김영숙. 2008. 침엽수 혼합목분에서 배양조건을 달리한 Fomitopsis palustris의 균체외 효소 활성 변화, Journal of Forest Science 24: 53-59.
  8. 최두열, 이영민, 김영균, 윤정준, 김영숙. 2007. 국내산 침엽수 목분의 진탕배양에서 나타난 Fomitopsis palustris의 효소 활성 및 셀룰로오즈 분해, 목재공학 35:91-99.
  9. 윤정준, 이영민, 최두열, 김영균, 김영숙. 2007. 볏짚 분해과정 중에 생산하는 Fomitopsis palustris 균체 외 Xylanase의 분리정제 및 효소특성, 목재공학 35: 159-165.
  10. Yoon, J. J, C. J. Cha, Y. S. Kim, D. W. Son, and Y. K. Kim. 2007. The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose, Journal of Microbiology and Biotechnology 17: 800-805.
  11. Kim, H. J., M. J. Cho, Y. H. Kim, K. Shin, Y. K. Kim, T. J. Kim, and Y. S. Kim. 2010. Effect of carbon source on the hydrolytic ability of the enzyme from Fomitopsis pinicola for lignocellulosic biomass, Journal of the Korean Wood Science and Technology (accepted).
  12. Somogi, M. 1959. Exacerbation of diabetes by excess of insulin action, American Journal of Medicine 26: 169-191. https://doi.org/10.1016/0002-9343(59)90307-9
  13. Bradford, M. M. 1967. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
  14. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  15. Ghose, T. K. 1987. Measurement of cellulose activity. Pure and Applied Chemistry 59: 257-268. https://doi.org/10.1351/pac198759020257
  16. Segal, L., J. J. Greely, A. E. Martin, Jr., and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal 29: 786-994. https://doi.org/10.1177/004051755902901003
  17. Juhasz, T., Z. Szengyel, N. Szijarto, and K. Reczey. 2004. Effect of pH on the cellulase production of Trichoderma reesei RUT C30. Applied Biochemistry and Biotechnology 113: 201-211. https://doi.org/10.1385/ABAB:113:1-3:201
  18. Yoon, J. J. and Y. K. Kim. 2005. Degradation of crystalline cellulose by the brown-rot basidiomycete Fomitopsis palustris. Journal of Microbiology 43: 487-492.
  19. Cohen, R., M. R. Suzuki, and K. E. Hemmel. 2005. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gleophyllum trabeum, Applied and Environmental Microbiology 71: 2412-2417. https://doi.org/10.1128/AEM.71.5.2412-2417.2005
  20. Mizutani, C., K. Sethumadhavan, P. Howley, and N. Bertoniere. 2002. Effect of nonionic surfactant on Trichoderma cellulase treatments of regenerated cellulose and cotton yarns, Cellulose 9: 83-89. https://doi.org/10.1023/A:1015821815568
  21. Kumar, R. and C. E. Wyman. 2009. Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies, Biotechnology and Bioengineering 102(6), 1544-1556 https://doi.org/10.1002/bit.22203
  22. Zhang, Y-H. P. and L. R. Lynd. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering 88: 797-824. https://doi.org/10.1002/bit.20282
  23. Al-Zuhair, S.. 2008. The effect of crystallinity of cellulose on the rate of reducing sugars production by heterogeneous enzymatic hydrolysis. Bioresource Technology 99: 4078-4085. https://doi.org/10.1016/j.biortech.2007.09.003
  24. Pedersen, M. and A. S. Meyer. 2009. Influence of substrate particle size and wet oxidation of physical surface structures and enzymatic hydrolysis of wheat straw. Biotechnology Progress 25: 399-408. https://doi.org/10.1002/btpr.141
  25. Chandra, R., S. Ewanick, C. Hsieh, and J. N. Saddler. 2008. The characterization of pretreated lignocellulosic substrates prior to enzymatic hydrolysis, Part 1: A modified simons' staining technique, Biotechnology Progress 24: 1178-1185. https://doi.org/10.1002/btpr.33

Cited by

  1. Analysis of Mycological Characteristics and Lignocellulose Degradation of Gyrodontium sacchari vol.43, pp.4, 2015, https://doi.org/10.4489/KJM.2015.43.4.239