DOI QR코드

DOI QR Code

The Characteristics of Holocellulose Aerogel

홀로셀룰로오스 에어로겔의 특성

  • Kwon, Gu-Joong (Institute of Forest Science, Kangwon National University) ;
  • Kim, Dae-Young (College of Life Science & Biotechnology Dongguk, University) ;
  • Kim, Nam-Hun (College of Forest & Environmental Sciences, Kangwon National University)
  • 권구중 (강원대학교 산림과학연구소) ;
  • 김대영 (동국대학교 바이오시스템대학) ;
  • 김남훈 (강원대학교 산림환경과학대학)
  • Received : 2010.01.15
  • Accepted : 2010.02.08
  • Published : 2010.05.25

Abstract

This study was carried out to investigate the characterization of aerogel made by holocellulose, the thermal properties of the aerogel, and its shapes and porous structures. The aerogel was made by holocellulose through the gelation in alkali hydroxide-urea solution and freeze drying processes. Holocellulose aerogel had porous structure such as net or sponge. The density of holocellulose aerogel was 0.04 g/$cm^3$, and the specific surface area 145.3 $m^2$/g. Although thermal degradation occurred in the range of $210{\sim}350^{\circ}C$, significant thermal degradation occurred at low temperature with low heating rate, Micropore volume was sharply increased with low heating rate. Holocellulose aerogel char obtained by carbonization with $900^{\circ}C$ and $0.5^{\circ}C$/min. heating rate had the highest surface area, 656.7 $m^2$/g. The deformed and irregular structures of holocellulose aerogel chars due to the thermal degradation were observed in SEM.

본 연구는 홀로셀룰로오스를 이용하여 제조한 에어로겔과 에어로겔의 열적특성 및 다공성에 대해서 검토하였다. 홀로셀룰로오스는 alkali hydroxide-urea 용액으로 용해 및 겔화시켜 동결건조로 에어로겔을 제조하였다. 홀로셀룰로오스 에어로겔은 그물모양 또는 스폰지와 같은 다공성구조로 이루어졌다. 밀도는 0.04g/$cm^3$이었고, 비표면적은 145.3 $m^2$/g이었다. 에어로겔의 열분해는 $210{\sim}350^{\circ}C$의 온도범위에서 일어났으나,저속의 승온조건일수록 열분해가 보다 낮은 온도에서 일어났다. 홀로셀룰로오스 에어로겔은 승온조건이 저속일수록 micro pore체적이 증가하였다. 홀로셀룰로오스 에어로겔 탄화물의 비표면적은$0.5^{\circ}C$/min의 승온조건이 656.7 $m^2$/g로 가장 높았다. 탄화물들은 에어로겔의 구조가 열에 의해 섬유의 배열이 변형되어 불규칙적 구조로 변화된 것이 주사전자현미경에 의해 관찰되었다.

Keywords

References

  1. Barrett, E. P., L. G. Jopyner, and P. H. Halenda. 1951. The determination of pore volume and area distributions in porous substances I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73: 373-380. https://doi.org/10.1021/ja01145a126
  2. Browne, F. L. and W. K. Tang. 1962. Thermogravimetric and differential analysis of wood and wood treated with inorganic salts during pyrolysis. Fire Res. Abs. Rev. 4: 76-91.
  3. Brunauer, S., P. H. Emmett, and E. Teller. 1938. Adsorption of gases in Multi molecular layers J. Am. Chem. Soc. 60: 309-319. https://doi.org/10.1021/ja01269a023
  4. Cai, J., S. Kimura, M. Wada, S. Kuga, and L. Zhang. 2008. Cellulose aerogels from aqueous alkali hydroxide-urea solution. Chemsuschem 1: 149-154. https://doi.org/10.1002/cssc.200700039
  5. Farmer, J. 1995. Method and apparatus for capacitive deionization, electrochemical purification, and regeration of electrodes, U.S. Patent No. 5,425,858.
  6. Fisher, F., A. Rigacci, R. Pirard, S. Berthon-Fabry, and P. Achard. 2006. Cellulose-base aerogels. Polymer 47: 7636-7645. https://doi.org/10.1016/j.polymer.2006.09.004
  7. Gavillon, R. and T. Budtova. 2008. Aerocellulose: New highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9: 269-277. https://doi.org/10.1021/bm700972k
  8. Ghanshyam, S. C. and L. Harinder. 2003. Novel grafted cellulose-based hydrogels for water technologies. Desalination 159: 131-138. https://doi.org/10.1016/S0011-9164(03)90065-8
  9. Hirata, T., S. Kawamoto, and T. Nishimoto. 1991. Thermogravimetric of wood treated with water-insoluble retardants and a proposal for development of five-retardant wood materials. Fire Materials 15: 27-36. https://doi.org/10.1002/fam.810150106
  10. Husing, N. and U. Schubert. 1998. Aerogels-airy materials; chemistry, structure, and properties. Angew Chem. Int. Ed. 37: 22-45. https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I
  11. Innerlohinger, J., H.K. Webber, and G. Kraft. 2006. Aerocellulose: Aerogels and Aerogel-like Materials made from cellulose. Macromol Symp. 244: 126-135. https://doi.org/10.1002/masy.200651212
  12. Jin, H., Y. Nishiyama, M. Wada, and S. Kuga. 2004. Nanofibrillar cellulose aerogels, Colloids surf A: Physicochem Eng. Aspects 240: 63-67. https://doi.org/10.1016/j.colsurfa.2004.03.007
  13. Kim, U. J. and S. Kuga. 2000. Relative interaction of aromatic amines with dialdehyde cellulose gel. Celluloes 7: 287-297. https://doi.org/10.1023/A:1009252124465
  14. Kistler, S. S. 1931. Coherent expanded aerogels and jellies. Nature. 127: 741.
  15. Kistler, S.S. 1932. Coherent expanded-Aerogels. J. Phys. Chem. 36: 52-64. https://doi.org/10.1021/j150331a003
  16. K.S.W. Sing et al. 1985. International Union of Pure and Applied Chemistry. Pure Appl. Chem. 57(4): 603-619. https://doi.org/10.1351/pac198557040603
  17. Kuga, S. 1980. New cellulose gel for chromatography. J. Chromatoga. A 195: 221-230. https://doi.org/10.1016/S0021-9673(00)96813-4
  18. Liebner, F., A. Potthast, T. Rosenau, E. Haimer, and M. Wendland. 2008. Cellulose aerogels: Highly porous, ultra-lightweight materials. Holzforschung 62: 129-135. https://doi.org/10.1515/HF.2008.051
  19. Pekala, R. W., C. T. Alviso, F. M. Kong, and S. S. Hulsey. 1992. Aerogels derived from multifunctional organic monomers. J. Non-cryst Solids 145: 90-98. https://doi.org/10.1016/S0022-3093(05)80436-3
  20. Tan C., M. Fung, J. K. Newman, and C. Vu. 2001. Organic aerogels with very high impact strength. Adv. Mater. 13: 644-646. https://doi.org/10.1002/1521-4095(200105)13:9<644::AID-ADMA644>3.0.CO;2-#