DOI QR코드

DOI QR Code

Study on Moisture Variation in Light Frame Wall with Different Wall Assemblies (II) - Moister Transfer of Light Frame Wall in Field Test -

벽체구성에 따른 목조벽체 내 수분변화에 대한 연구(II) - 외기에 노출된 목조벽체의 수분이동 -

  • Kim, Se-Jong (Department of Forest Sciences, College of Agriculture and Life Science, Seoul National University) ;
  • Yeo, Hwan-Myeong (Department of Forest Sciences, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Science, Seoul National University) ;
  • Lee, Jun-Jae (Department of Forest Sciences, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Science, Seoul National University)
  • 김세종 (서울대학교 농업생명과학대학 산림과학부) ;
  • 여환명 (서울대학교 농업생명과학대학 농업생명과학연구원) ;
  • 이전제 (서울대학교 농업생명과학대학 농업생명과학연구원)
  • Received : 2009.10.30
  • Accepted : 2010.01.18
  • Published : 2010.01.25

Abstract

The purpose of this study was finding out proper wall assembly to reduce moisture accumulation in light frame wall under outdoor air conditions. For the purpose, moisture transfer and accumulation in a wall were evaluated for five types of wall assembly; typical wall (T), addition of a vapor retarder (P1), addition of two vapor retarders (P2), addition of an open air gap for ventilation behind the siding (P3), and shift of vapor retarder with proposed wall 'P3' (P4). The moisture transfer and accumulation in the all walls were evaluated after applying the typical and proposed walls to the field test house. Performances of the typical and proposed walls were compared according to the season. Rank for effective wall on reducing moisture accumulation in wall was 1) shift of vapor ratarder and addition of open air gap (P4), 2) addition of vapor retarder (P1), 3) typical wall (T), 4) addition of open air gap (P3), and 5) the other (P2).

본 연구는 외기에 노출된 경골목조벽체의 수분축적을 감소시킬 수 있는 벽체 구성을 찾기 위해 수행되었다. 이를 위해 다음 다섯 가지 형태의 벽체 구성을 대상으로 벽체 내 수분이동과 수분축적을 평가하였다; 일반적인 벽체구성(기본벽체 T), 실내 측 방습지 추가(P1), 실내 측과 단열재 구간의 방습지 추가(P2), 환기를 위한 사이딩 뒷면의 공기층 추가(P3), P3벽체에서 실외 측 방습지의 실내 측으로 이동(P4). 옥외 실험가옥에 기본벽체와 제안벽체를 설치하여 외기에 노출된 벽체의 수분이동과 수분축적을 평가하였다. 실험결과 계절에 따라 추가 방습지와 공기층의 개선 정도가 다르게 나타났으나 연간 벽체 내 수분축적 감소에 유리한 벽체 구성은 1) 공기층 추가 및 실내 측으로 방습지 이동(P4), 2) 실내 측 방습지 추가(P1), 3) 기본벽체(T), 4) 공기층 추가(P3), 5) 실내 측 및 단열재 구간 방습지 추가(P2) 순으로 나타났다.

Keywords

References

  1. 김세종, 이전제. 2009. 벽체구성에 따른 목조벽체 내 수분변화에 대한 연구(I) - 실내 실험을 통한 개선 가능성 평가 -. 목재공학. 35(4): 320-329.
  2. Ayerst, G. 1969. The effect of moisture and temperature on growth and spore germination in some fungi. JJ. Stored Prod. Res. 5. S: 127-141. https://doi.org/10.1016/0022-474X(69)90055-1
  3. Clarke, J. A., C. M. Johnstone, N. J. Kelly, R. C. Mclean, J. A. Anderson, N. J. Rowan, and J. E, Smith. 1999. A technique for the prediction of the conditions leading to mould growth in buildings. Building and Environment. 34(4): 515-521. https://doi.org/10.1016/S0360-1323(98)00023-7
  4. Gudum, C. and C. Rooe. 2004. Moisture transport by convection in lightweight exterior facades. Proceeding CD of Performance of Exterior Envelopes of Whole Buildings IX.
  5. Hyland, R. W. and A. Wexler. 1983b. Formulations for the thermooynamic properties of the saturated phases of $H_2O$ from 173.15 K to 473.15 K. ASHRAE Transactions 89(2A): 500-519.
  6. Kim, s. J., C. Y. Park, and J. J. Lee. 2006. Hygroscopic properties of light-frame wall with different assemblies. Mokchae Konghak. 34(2): 22-29.
  7. Nore, K. and J. V. Thue. 2005. Ventilated Wooden Oaddings - A Field Investigation. Project paper of NBI Research & Development program. http://www.byv.kth.se/avd/byte/reykjavik/pdf/art_103.pdf.
  8. Ochs, F., W. Heidemann, and H. Muller-Steinhagen. 2008. Effective thermal conductivity of moistened insulation materials as a function of emperature. International Journal of Heat and Mass Transfer. 51(3-4): 539-552. https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.005
  9. Owen, M. American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2001 ASHRAE Handbook Fundamentals. ch. 6.2-6.9.
  10. Rousseau, M. Z. 2003. Heat, air and moisture control strategies for managing condensation in walls. Building Science Insight 2003 Proceedings. National Research Council Canada. NRCC 46734: 1-11.
  11. Sedlbauer, K. 2002. Prediction of Mould Growth by Hygrothermal Calculation. Journal of Building Physics. 25(4): 321-336. https://doi.org/10.1177/0075424202025004093
  12. Sherwood, G. E. 1983. Condensation potential in high thermal performance walls - Cold winter climate. Forest Service, Forest Prooucts Laboratory. Research Paper FPL 433.
  13. Sherwood, G. E. 1985. Condensation potential in high thermal performance walls - Hot, humid summer climate. Forest Service, Forest Prooucts Laboratory. Research Paper FPL 455.
  14. TenWolde, A., J. D. McNatt, and L. Krahn. 1988. Thermal Properties of wood and wood panel prooucts for use in buildings. Forest Service, Forest Prooucts Laboratory. DOE/USDA-21697/1. ORNL/Sub/87-21697/1.