References
- L. Ahlfors, Conformal Invariants, McGraw-Hill, New York, 1973.
- J.W. Cannon, The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), 155-234. https://doi.org/10.1007/BF02398434
- R.J. Duffm, The extremal length of a network, J. Math. Anal. Appl. 5 (1962), 200-215. https://doi.org/10.1016/S0022-247X(62)80004-3
- Z. He and O. Schramm, Fixed points, Koebe uniformization and circle packings, Ann. of Math. 137(2) (1993), 369-406. https://doi.org/10.2307/2946541
- Z. He and O. Schramm, Hyperbolic and parabolic packings, Discrete Comput. Geom. 14(2) (1995), 123-149. https://doi.org/10.1007/BF02570699
- S. Merenkov and B. Oh, Classical and cp-types of surfaces of class S, in preperation.
- R. Nevanlinna, Analytic Functions, Springer-Verlag, New York-Berlin, 1970.
- B. Rodin and D.P. Sullivan, The convergence of circle packings to the Riemann mapping, J. Differential Geom. 26(2) (1987), 349-360. https://doi.org/10.4310/jdg/1214441375
- O. Schramm, Transboundary extremal length, J. Anal. Math. 66 (1995), 307-329. https://doi.org/10.1007/BF02788827
- K. Stephenson, Circle packing: a mathematical tale, Notices Amer. Math. Soc. 50(11) (2003), 1376-1388.
- K. Stephenson, Introduction to circle packing; the theory of discrete analytic functions, Cambridge University Press, Cambridge, 2005.
- W.P. Thurston, The finite Riemann mapping theorem, Unpublished talk given at the International Symposium in Celebration of the Proof of the Bieberbach Conjecture (Purdue University, 1985).