A CRITERION FOR VERTEX EXTREMAL LENGTH PARABOLIC GRAPHS AND ITS APPLICATION

  • Oh, Byung-Geun (Department of Mathematics Education Hanyang University)
  • Received : 2010.10.05
  • Accepted : 2010.12.10
  • Published : 2010.12.30

Abstract

We give a criterion for vertex extremal length parabolicity of locally finite planar graphs, and use it to show that a disk triangulation graph is circle packing parabolic if and only if its immediate finer graphs are circle packing parabolic.

Keywords

References

  1. L. Ahlfors, Conformal Invariants, McGraw-Hill, New York, 1973.
  2. J.W. Cannon, The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), 155-234. https://doi.org/10.1007/BF02398434
  3. R.J. Duffm, The extremal length of a network, J. Math. Anal. Appl. 5 (1962), 200-215. https://doi.org/10.1016/S0022-247X(62)80004-3
  4. Z. He and O. Schramm, Fixed points, Koebe uniformization and circle packings, Ann. of Math. 137(2) (1993), 369-406. https://doi.org/10.2307/2946541
  5. Z. He and O. Schramm, Hyperbolic and parabolic packings, Discrete Comput. Geom. 14(2) (1995), 123-149. https://doi.org/10.1007/BF02570699
  6. S. Merenkov and B. Oh, Classical and cp-types of surfaces of class S, in preperation.
  7. R. Nevanlinna, Analytic Functions, Springer-Verlag, New York-Berlin, 1970.
  8. B. Rodin and D.P. Sullivan, The convergence of circle packings to the Riemann mapping, J. Differential Geom. 26(2) (1987), 349-360. https://doi.org/10.4310/jdg/1214441375
  9. O. Schramm, Transboundary extremal length, J. Anal. Math. 66 (1995), 307-329. https://doi.org/10.1007/BF02788827
  10. K. Stephenson, Circle packing: a mathematical tale, Notices Amer. Math. Soc. 50(11) (2003), 1376-1388.
  11. K. Stephenson, Introduction to circle packing; the theory of discrete analytic functions, Cambridge University Press, Cambridge, 2005.
  12. W.P. Thurston, The finite Riemann mapping theorem, Unpublished talk given at the International Symposium in Celebration of the Proof of the Bieberbach Conjecture (Purdue University, 1985).